首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1220篇
  免费   49篇
  国内免费   3篇
  2023年   7篇
  2022年   13篇
  2021年   30篇
  2020年   21篇
  2019年   26篇
  2018年   34篇
  2017年   27篇
  2016年   44篇
  2015年   60篇
  2014年   80篇
  2013年   96篇
  2012年   101篇
  2011年   89篇
  2010年   69篇
  2009年   56篇
  2008年   64篇
  2007年   57篇
  2006年   43篇
  2005年   34篇
  2004年   39篇
  2003年   25篇
  2002年   20篇
  2001年   18篇
  2000年   15篇
  1999年   20篇
  1998年   17篇
  1997年   5篇
  1996年   3篇
  1995年   6篇
  1993年   4篇
  1992年   7篇
  1991年   22篇
  1990年   8篇
  1989年   13篇
  1988年   9篇
  1987年   6篇
  1986年   9篇
  1985年   8篇
  1984年   13篇
  1983年   10篇
  1982年   7篇
  1981年   5篇
  1980年   4篇
  1979年   3篇
  1978年   4篇
  1976年   4篇
  1972年   4篇
  1970年   2篇
  1969年   2篇
  1968年   2篇
排序方式: 共有1272条查询结果,搜索用时 31 毫秒
151.
Aluminum phosphide, a well-known stored grain fumigant, available in solid formulation, has shown promise as wood fumigant. This chemical decomposes to phosphine when exposed to moisture. The feasibility of fumigant treatment to extend the service life of wood was evaluated in a small block test of two wood species. Hard wood (Mangifera indica L.) and conifer blocks (Pinus roxburghii Sargent) were fumigated with different concentrations (0.05, 0.1, 0.2, 0.4, 0.8, and 1.6%) of aluminum phosphide. Fumigated blocks were exposed to Lyctus africanus Lesne (Coleoptera; Lyctidae) larvae. Results revealed that aluminum phosphide showed complete mortality of Lyctus larvae at 0.2% concentration, that is, 0.93 g/m3 retention level. Mean mortality of 74% of Lyctus larvae was observed in soft wood blocks fumigated with lowest concentration, that is, 0.05% of aluminum phosphide, whereas in hard wood blocks > 85% mortality was observed at this concentration.  相似文献   
152.
Y Madrona  S Tripathi  H Li  TL Poulos 《Biochemistry》2012,51(33):6623-6631
The crystal structure of the P450cin substrate-bound nitric oxide complex and the substrate-free form have been determined revealing a substrate-free structure that adopts an open conformation relative to the substrate-bound structure. The region of the I helix that forms part of the O(2) binding pocket shifts from an α helix in the substrate-free form to a π helix in the substrate-bound form. Unique to P450cin is an active site residue, Asn242, in the I helix that H-bonds with the substrate. In most other P450s this residue is a Thr and plays an important role in O(2) activation by participating in an H-bonding network required for O(2) activation. The π/α I helix transition results in the carbonyl O atom of Gly238 moving in to form an H-bond with the water/hydroxide ligand in the substrate-free form. The corresponding residue, Gly248, in the substrate-free P450cam structure experiences a similar motion. Most significantly, in the oxy-P450cam complex Gly248 adopts a position midway between the substrate-free and -bound states. A comparison between these P450cam and the new P450cin structures provides insights into differences in how the two P450s activate O(2). The structure of P450cin complexed with nitric oxide, a close mimic of the O(2) complex, shows that Gly238 is likely to form tighter interactions with ligands than the corresponding Gly248 in P450cam. Having a close interaction between an H-bond acceptor, the Gly238 carbonyl O atom, and the distal oxygen atom of O(2) will promote protonation and hence further reduction of the oxy complex to the hydroperoxy intermediate resulting in heterolytic cleavage of the peroxide O-O bond and formation of the active ferryl intermediate required for substrate hydroxylation.  相似文献   
153.
Synaptic pathology and mitochondrial oxidative damage are early events in Alzheimer's disease (AD) progression. Loss of synapses and synaptic damage are the best correlates of cognitive deficits found in AD patients. Recent research on amyloid beta (Aβ) and mitochondria in AD revealed that Aβ accumulates in synapses and synaptic mitochondria, leading to abnormal mitochondrial dynamics and synaptic degeneration in AD neurons. Further, recent studies using live-cell imaging and primary neurons from amyloid beta precursor protein (AβPP) transgenic mice revealed reduced mitochondrial mass, defective axonal transport of mitochondria and synaptic degeneration, indicating that Aβ is responsible for mitochondrial and synaptic deficiencies. Tremendous progress has been made in studying antioxidant approaches in mouse models of AD and clinical trials of AD patients. This article highlights the recent developments made in Aβ-induced abnormal mitochondrial dynamics, defective mitochondrial biogenesis, impaired axonal transport and synaptic deficiencies in AD. This article also focuses on mitochondrial approaches in treating AD, and also discusses latest research on mitochondria-targeted antioxidants in AD. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.  相似文献   
154.
Chemokine receptors CXCR7 and CXCR4 bind to the same ligand stromal cell derived factor-1alpha (SDF-1α/CXCL12). We assessed the downstream signaling pathways mediated by CXCL12-CXCR7 interaction in Jurkat T cells. All experiments were carried out after functionally blocking the CXCR4 receptor. CXCL12, on binding CXCR7, induced phosphorylation of extra cellular regulated protein kinases (ERK 1/2) and Akt. Selective inhibition of each signal demonstrated that phosphorylated ERK 1/2 is essential for chemotaxis and survival of T cells whereas activation of Akt promotes only cell survival. Another interesting finding of this study is that CXCL12-CXCR7 interaction under normal physiological conditions does not activate the p38 pathway. Furthermore, we observed that the CXCL12 signaling via CXCR7 is Giα independent. Our findings suggest that CXCR7 promotes cell survival and does not induce cell death in T cells. The CXCL12 signaling via CXCR7 may be crucial in determining the fate of the activated T cells.  相似文献   
155.
156.
Increased oxidative stress (OS) in diabetes mellitus is one of the major factors leading to diabetic pathology. However, the mediators and mechanism that provoke OS in diabetes is not fully understood, and it is possible that accumulation of advanced glycation end products (AGEs) formed secondary to hyperglycemic conditions may incite circulating polymorphonuclear neutrophils (PMN) to generate reactive oxygen species (ROS). In this report, we aim to investigate the effect of AGE on reactive oxygen and nitrogen species generation and subsequent OS in PMN. AGE-HSA exert dose- and time-dependent enhancement of ROS and reactive nitrogen intermediates (RNI) generation by PMN. Increased ROS and RNI generation were found to be mediated through the upregulation of NADPH oxidase and inducible nitric oxide synthase (iNOS), respectively, as evident from the fact that AGE-treated neutrophils failed to generate ROS and RNI in presence of diphenyleneiodonium, a flavoprotein inhibitor for both enzymes. Further increased generation of ROS and RNI ceased when the cells were incubated with anti-RAGE antibody suggesting the involvement of AGE-RAGE interaction. Also increased malondialdehyde (MDA) and protein carbonyl formation in AGE-exposed PMN suggest induction of OS by AGE. This study provides evidence that AGEs may play a key role in the induction of oxidative stress through the augmentation of PMN-mediated ROS and RNI generation and this may be in part responsible for development of AGE-induced diabetic pathology.  相似文献   
157.
Myostatin (MSTN), a member of transforming growth factor-β (TGF-β) superfamily, is a negative regulator of the skeletal muscle growth, and suppresses the proliferation and differentiation of myoblast cells. Dysfunction of MSTN gene either by natural mutation or genetic manipulation (knockout or knockdown) has been reported to interrupt its proper function and to increase the muscle mass in many mammalian species. RNA interference (RNAi) mediated by small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) has become a powerful tool for gene knockdown studies. In the present study transient silencing of MSTN gene in chicken embryo fibroblast cells was evaluated using five different shRNA expression constructs. We report here up to 68% silencing of myostatin mRNA using these shRNA constructs in transiently transfected fibroblasts (p<0.05). This was, however, associated with induction of interferon responsive genes (OAS1, IFN-β) (3.7-64 folds; p<0.05). Further work on stable expression of antimyostatin shRNA with minimum interferon induction will be of immense value to increase the muscle mass in the transgenic animals.  相似文献   
158.
Biogenic origin of the significant proportion of coal bed methane has indicated the role of microbial communities in methanogenesis. By using cultivation-independent approach, we have analysed the archaeal and bacterial community present in the formation water of an Indian coal bed at 600–700 m depth to understand their role in methanogenesis. Presence of methanogens in the formation water was inferred by epifluorescence microscopy and PCR amplification of mcrA gene. Archaeal 16S rRNA gene clone library from the formation water metagenome was dominated by methanogens showing similarity to Methanobacterium, Methanothermobacter and Methanolinea whereas the clones of bacterial 16S rRNA gene library were closely related to Azonexus, Azospira, Dechloromonas and Thauera. Thus, microbial community of the formation water consisted of predominantly hydrogenotrophic methanogens and the proteobacteria capable of nitrogen fixation, nitrate reduction and polyaromatic compound degradation. Methanogenic potential of the microbial community present in the formation water was elucidated by the production of methane in the enrichment culture, which contained 16S rRNA gene sequences showing close relatedness to the genus Methanobacterium. Microcosm using formation water as medium as well as a source of inoculum and coal as carbon source produced significant amount of methane which increased considerably by the addition of nitrite. The dominance of Diaphorobacter sp. in nitrite amended microcosm indicated their important role in supporting methanogenesis in the coal bed. This is the first study indicating existence of methanogenic and bacterial community in an Indian coal bed that is capable of in situ biotransformation of coal into methane.  相似文献   
159.
160.
The DLC1 (for deleted in liver cancer 1) tumor suppressor gene encodes a RhoGAP protein that inactivates Rho GTPases, which are implicated in regulation of the cytoskeleton and adherens junctions (AJs), a cell-cell adhesion protein complex associated with the actin cytoskeleton. Malignant transformation and tumor progression to metastasis are often associated with changes in cytoskeletal organization and cell-cell adhesion. Here we have established in human cells that the AJ-associated protein α-catenin is a new binding partner of DLC1. Their binding was mediated by the N-terminal amino acids 340 to 435 of DLC1 and the N-terminal amino acids 117 to 161 of α-catenin. These proteins colocalized in the cytosol and in the plasma membrane, where together they associated with E-cadherin and β-catenin, constitutive AJ proteins. Binding of DLC1 to α-catenin led to their accumulation at the plasma membrane and required DLC1 GAP activity. Knocking down α-catenin in DLC1-positive cells diminished DLC1 localization at the membrane. The DLC1-α-catenin complex reduced the Rho GTP level at the plasma membrane, increased E-cadherin's mobility, affected actin organization, and stabilized AJs. This process eventually contributed to a robust oncosuppressive effect of DLC1 in metastatic prostate carcinoma cells. Together, these results unravel a new mechanism through which DLC1 exerts its strong oncosuppressive function by positively influencing AJ stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号