首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1127篇
  免费   90篇
  国内免费   1篇
  2021年   12篇
  2020年   6篇
  2019年   11篇
  2018年   10篇
  2017年   13篇
  2016年   22篇
  2015年   39篇
  2014年   61篇
  2013年   52篇
  2012年   71篇
  2011年   53篇
  2010年   52篇
  2009年   35篇
  2008年   44篇
  2007年   51篇
  2006年   59篇
  2005年   53篇
  2004年   39篇
  2003年   41篇
  2002年   47篇
  2001年   44篇
  2000年   45篇
  1999年   48篇
  1998年   10篇
  1997年   16篇
  1996年   17篇
  1995年   11篇
  1994年   5篇
  1993年   11篇
  1992年   27篇
  1991年   21篇
  1990年   14篇
  1989年   20篇
  1988年   8篇
  1987年   7篇
  1986年   8篇
  1985年   21篇
  1984年   10篇
  1983年   12篇
  1981年   5篇
  1979年   7篇
  1977年   5篇
  1976年   8篇
  1975年   5篇
  1974年   6篇
  1973年   6篇
  1972年   4篇
  1969年   6篇
  1965年   4篇
  1955年   4篇
排序方式: 共有1218条查询结果,搜索用时 264 毫秒
131.
132.
The Streptococcus thermophilus virulent pac-type phage 2972 was isolated from a yogurt made in France in 1999. It is a representative of several phages that have emerged with the industrial use of the exopolysaccharide-producing S. thermophilus strain RD534. The genome of phage 2972 has 34,704 bp with an overall G+C content of 40.15%, making it the shortest S. thermophilus phage genome analyzed so far. Forty-four open reading frames (ORFs) encoding putative proteins of 40 or more amino acids were identified, and bioinformatic analyses led to the assignment of putative functions to 23 ORFs. Comparative genomic analysis of phage 2972 with the six other sequenced S. thermophilus phage genomes confirmed that the replication module is conserved and that cos- and pac-type phages have distinct structural and packaging genes. Two group I introns were identified in the genome of 2972. They interrupted the genes coding for the putative endolysin and the terminase large subunit. Phage mRNA splicing was demonstrated for both introns, and the secondary structures were predicted. Eight structural proteins were also identified by N-terminal sequencing and/or matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Detailed analysis of the putative minor tail proteins ORF19 and ORF21 as well as the putative receptor-binding protein ORF20 showed the following interesting features: (i) ORF19 is a hybrid protein, because it displays significant identity with both pac- and cos-type phages; (ii) ORF20 is unique; and (iii) a protein similar to ORF21 of 2972 was also found in the structure of the cos-type phage DT1, indicating that this structural protein is present in both S. thermophilus phage groups. The implications of these findings for phage classification are discussed.  相似文献   
133.
Tardif MR  Tremblay MJ 《Journal of virology》2005,79(21):13714-13724
Memory CD4+ T cells are considered a stable latent reservoir for human immunodeficiency virus type 1 (HIV-1) and a barrier to eradication of this retroviral infection in patients under therapy. It has been shown that memory CD4+ T cells are preferentially infected with HIV-1, but the exact mechanism(s) responsible for this higher susceptibility remains obscure. Previous findings indicate that incorporation of host-derived intercellular adhesion molecule 1 (ICAM-1) in HIV-1 increases virus infectivity. To measure the putative involvement of virus-anchored ICAM-1 in the preferential infection of memory cells by HIV-1, quiescent and activated naive and memory T-cell subsets were exposed to isogenic virions either lacking or bearing ICAM-1. Memory CD4+ T cells were found to be more susceptible than naive CD4+ T cells to infection with ICAM-1-bearing virions, as exemplified by a more important virus replication, an increase in integrated viral DNA copies, and a more efficient entry process. Interactions between virus-associated host ICAM-1 and cell surface LFA-1 under a cluster formation seem to be responsible for the preferential HIV-1 infection of the memory cell subset. Altogether, these data shed light on a potential mechanism by which HIV-1 preferentially targets long-lived memory CD4+ T cells.  相似文献   
134.
Tyrosine phosphorylation is negatively regulated by the protein-tyrosine phosphatases (PTPs). In order to find the physiological substrates of these enzymes, diverse PTP mutants that do not possess any catalytic activities but appear to bind tightly to their tyrosine phosphorylated substrates have been designed. Hence, they can be used as tools to pull out their respective substrates from heterogeneous extracts. Named PTP "substrate-trapping" mutants by the Tonks laboratory, they represent a diverse variety of defective PTPs that are epitomized by the Cys to Ser mutant (C/S) where the active cysteine residue of the signature motif is mutated to a serine residue. In addition, new mutants have been developed which are expected to help characterize novel and less abundant substrates. In this article, we review and describe all the different substrate-trapping mutants that have successfully been used or that hold interesting promises. We present their methodology to identify substrates in vivo (co-immunoprecipitation) and in vitro (GST pulldown), and provide a current list of substrates that have been identified using these technologies.  相似文献   
135.
Pagliarini et al (2005) recently identified a new mitochondrial specific protein tyrosine phosphatase, PTPMT1. This report comments on its consequences for mitochondrial function and on its potential to act as a therapeutic target in diabetes and cancer.  相似文献   
136.
We examined the oligosaccharide binding to Streptomyces sp. N174 chitosanase by fluorescence spectroscopy. By means of the tryptophan fluorescence quenching, the oligosaccharide binding abilities were evaluated using the three mutant enzymes (D57A, E197A, and D201A). The enzymatic activities of the mutant enzymes were 0.5%, 20.0%, and 38.5% of that of the wild type, respectively. Scatchard plot obtained for the wild type enzyme showed a biphasic profile, suggesting that the oligosaccharide binds to the chitosanase with two different binding sites (the high affinity site and the low affinity site). In contrast, Scatchard plot for E197A exhibited a monophasic profile, in which the slope of the line corresponds to that for the low affinity binding of the wild type enzyme. A monophasic profile was also obtained for D201A, but the slope of the line was similar to that of the high affinity binding. Thus, we conclude that Glu197 and Asp201 are responsible for oligosaccharide binding at the high affinity site and the low affinity site, respectively, which correspond to the (-n) subsites and the (+n) subsites (n=1, 2, and 3). The fluorescence quenching was very weak in D57A, suggesting a strong contribution of this residue to the oligosaccharide binding.  相似文献   
137.
Proteomic analysis of bacterial pathogens isolated from in vivo sources, such as infected tissues, provides many challenges not the least of which is the limited quantity of sample available for analysis. It is, therefore, highly desirable to develop a one-step cellular lysis and protein solubilization method that minimizes protein losses and allows the maximum possible coverage of the proteome. Here, we have used standard sample buffer constituents including urea, thiourea and DTT, but varied the detergent composition of the buffers in order to achieve the best quality of gels and the greatest spot resolution. We found that the most efficient solubilizing solution in this case consisted of 7 M urea, 2 M thiourea, 1% DTT, 0.5% amidosulfobetaine-14 (ASB-14) and 4% 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). Inclusion of low levels of ASB-14 in solutions allowed visualization of a subset of 24 new protein spots in the Live Vaccine Strain (LVS) of Francisella tularensis and 21 spots in a virulent A-strain of the pathogen. Further investigation showed that 15 of the 24 enriched LVS spots were membrane or membrane-associated proteins suggesting that the optimized lysis and solubilization solution aids in the detection of more hydrophobic proteins. This methodology is now being applied to the analysis of Francisella obtained from in vivo sources.  相似文献   
138.
Recently, we reported that ouabain kills renal epithelial and vascular endothelial cells independently of elevation of the [Na(+)](i)/[K(+)](i) ratio. These observations raised the possibility of finding cardiotonic steroids (CTS) that inhibit the Na(+),K(+) pump without attenuating cell survival and vice versa. To test this hypothesis, we compared CTS action on Na(+),K(+) pump, [Na(+)](i) content, and survival of Madin-Darby canine kidney cells. At a concentration of 1 microM, ouabain and other tested cardenolides, as well as bufadienolides such as bufalin, cinobufagin, cinobufotalin, and telobufotoxin, led to approximately 10-fold inhibition of the Na(+),K(+) pump, a 2-3-fold decrease in staining with dimethylthiazol-diphenyltetrazolium (MTT), and massive death indicated by detachment of approximately 80% of cells and caspase-3 activation. In contrast, Na(+),K(+) pump inhibition and elevation of [Na(+)](i) seen in the presence of 3 microM marinobufagenin (MBG) and marinobufotoxin did not affect MTT staining and cell survival. Inhibition of the Na(+),Rb(+) pump in K(+)-free medium was not accompanied by a decline of MTT staining and cell detachment but increased sensitivity to CTS. In K(+)-free medium, half-maximal inhibition of (86)Rb influx was observed in the presence of 0.04 microM ouabain and 0.1 microM MBG, whereas half-maximal detachment and decline of MTT staining were detected at 0.03 and 0.004 microM of ouabain versus 10 and 3 microM of MBG, respectively. Both ouabain binding and ouabain-induced [Na(+)](i),[K(+)](i)-independent signaling were suppressed in the presence of MBG. Thus, our results show that CTS exhibit distinctly different potency in Na(+),K(+) pump inhibition and triggering of [Na(+)](i)/[K(+)](i)-independent signaling, including cell death.  相似文献   
139.
Neural networks are formed by accurate connectivity of neurons and glial cells in the brain. These networks employ a three-dimensional bio-surface that both assigns precise coordinates to cells during development and facilitates their connectivity and functionality throughout life. Using specific topographic and chemical features, we have taken steps towards the development of poly(dimethylsiloxane; PDMS) neurochips that can be used to generate and study synthetic neural networks. These neurochips have micropatterned structures that permit adequate cell positioning and support cell survival. Within days of plating, cells differentiate into neurons displaying excitability and communication, as evidenced by intracellular calcium oscillations and action potentials. The structural and functional capacities of such simple neural networks open up new opportunities to study synaptic communication and plasticity.  相似文献   
140.
Phosphatidylinositol transfer protein (PITP) is a ubiquitous eukaryotic protein that preferentially binds either phosphatidylinositol or phosphatidylcholine and catalyzes the exchange of these lipids between membranes. Mammalian cytosolic PITPs include the ubiquitously expressed PITPalpha and PITPbeta isoforms (269-270 residues). The crystal structure of rat PITPbeta complexed to dioleoylphosphatidylcholine was determined to 2.18 A resolution with molecular replacement using rat PITPalpha (77% sequence identify) as the phasing model. A structure comparison of the alpha and beta isoforms reveals minimal differences in protein conformation, differences in acyl conformation in the two isoforms, and remarkable conservation of solvent structure around the bound lipid. A comparison of transfer activity by human and rat PITPs, using small unilamellar vesicles with carefully controlled phospholipid composition, indicates that the beta isoforms have minimal differences in transfer preference between PtdIns and PtdCho when donor vesicles contain predominantly PtdCho. When PtdCho and PtdIns are present in equivalent concentrations in donor vesicles, PtdIns transfer occurs at approximately 3-fold the rate of PtdCho. The rat PITPbeta isoform clearly has the most diminished transfer rate of the four proteins studied. With the two rat isoforms, site-directed mutations of two locations within the lipid binding cavity that possess differing biochemical properties were characterized: I84alpha/F83beta and F225alpha/L224beta. The 225/224 locus is more critical in determining substrate specificity. Following the mutation of this locus to the other amino acid, the PtdCho transfer specific activity became PITPalpha (F225L) approximately PITPbeta and PITPbeta (L224F) approximately PITPalpha. The 225alpha/224beta locus plays a modest role in the specificity of both isoforms toward CerPCho.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号