首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1931篇
  免费   168篇
  2021年   32篇
  2020年   22篇
  2019年   25篇
  2018年   28篇
  2017年   19篇
  2016年   28篇
  2015年   69篇
  2014年   95篇
  2013年   113篇
  2012年   134篇
  2011年   126篇
  2010年   80篇
  2009年   58篇
  2008年   104篇
  2007年   112篇
  2006年   119篇
  2005年   111篇
  2004年   91篇
  2003年   110篇
  2002年   98篇
  2001年   20篇
  2000年   12篇
  1999年   22篇
  1998年   28篇
  1997年   13篇
  1996年   14篇
  1995年   15篇
  1994年   20篇
  1993年   15篇
  1992年   17篇
  1991年   8篇
  1990年   9篇
  1989年   10篇
  1988年   9篇
  1987年   9篇
  1986年   10篇
  1985年   15篇
  1984年   7篇
  1983年   9篇
  1982年   16篇
  1981年   13篇
  1980年   16篇
  1979年   7篇
  1978年   7篇
  1977年   15篇
  1976年   18篇
  1975年   13篇
  1974年   8篇
  1973年   12篇
  1971年   7篇
排序方式: 共有2099条查询结果,搜索用时 15 毫秒
101.
Membrane model systems consisting of phosphatidylcholines and hydrophobic alpha-helical peptides with tryptophan flanking residues, a characteristic motif for transmembrane protein segments, were used to investigate the contribution of tryptophans to peptide-lipid interactions. Peptides of different lengths and with the flanking tryptophans at different positions in the sequence were incorporated in relatively thick or thin lipid bilayers. The organization of the systems was assessed by NMR methods and by hydrogen/deuterium exchange in combination with mass spectrometry. Previously, it was found that relatively short peptides induce nonlamellar phases and that relatively long analogues order the lipid acyl chains in response to peptide-bilayer mismatch. Here it is shown that these effects do not correlate with the total hydrophobic peptide length, but instead with the length of the stretch between the flanking tryptophan residues. The tryptophan indole ring was consistently found to be positioned near the lipid carbonyl moieties, regardless of the peptide-lipid combination, as indicated by magic angle spinning NMR measurements. These observations suggest that the lipid adaptations are not primarily directed to avoid a peptide-lipid hydrophobic mismatch, but instead to prevent displacement of the tryptophan side chains from the polar-apolar interface. In contrast, long lysine-flanked analogues fully associate with a bilayer without significant lipid adaptations, and hydrogen/deuterium exchange experiments indicate that this is achieved by simply exposing more (hydrophobic) residues to the lipid headgroup region. The results highlight the specific properties that are imposed on transmembrane protein segments by flanking tryptophan residues.  相似文献   
102.
Cama E  Emig FA  Ash DE  Christianson DW 《Biochemistry》2003,42(25):7748-7758
Arginase is a binuclear manganese metalloenzyme that hydrolyzes l-arginine to form l-ornithine and urea. The three-dimensional structures of D128E, D128N, D232A, D232C, D234E, H101N, and H101E arginases I have been determined by X-ray crystallographic methods to elucidate the roles of the first-shell metal ligands in the stability and catalytic activity of the enzyme. This work represents the first structure-based dissection of the binuclear manganese cluster using site-directed mutagenesis and X-ray crystallography. Substitution of the metal ligands compromises the catalytic activity of the enzyme, either by the loss or disruption of the metal cluster or the nucleophilic metal-bridging hydroxide ion. However, the substitution of the metal ligands or the reduction of Mn(2+)(A) or Mn(2+)(B) occupancy does not compromise enzyme-substrate affinity as reflected by K(M), which remains relatively invariant across this series of arginase variants. This implicates a nonmetal binding site for substrate l-arginine in the precatalytic Michaelis complex, as proposed based on analysis of the native enzyme structure (Kanyo, Z. F., Scolnick, L. R., Ash, D. E., and Christianson, D. W. (1996) Nature 383, 554-557).  相似文献   
103.
Equinatoxin II (EqtII), a protein toxin from the sea anemone Actinia equina, readily creates pores in sphingomyelin-containing lipid membranes. The perturbation by EqtII of model lipid membranes composed of dimyristoylphosphatidycholine and sphingomyelin (10 mol %) was investigated using wideline phosphorus-31 and deuterium NMR. The preferential interaction between EqtII (0.1 and 0.4 mol %) and the individual bilayer lipids was studied by (31)P magic angle spinning NMR, and toxin-induced changes in bilayer morphology were examined by freeze-fracture electron microscopy. Both NMR and EM showed the formation of an additional lipid phase in sphingomyelin-containing mixed lipid multilamellar suspensions with 0.4 mol % EqtII. The new toxin-induced phase consisted of small unilamellar vesicles 20-40 nm in diameter. Deuterium NMR showed that the new lipid phase contains both dimyristoylphosphatidycholine and sphingomyelin. Solid-state (31)P NMR showed an increase in spin-lattice and a decrease in spin-spin relaxation times in mixed-lipid model membranes in the presence of EqtII, consistent with an increase in the intensity of low frequency motions. The (2)H and (31)P spectral intensity distributions confirmed a change in lipid mobility and showed the creation of an isotropic lipid phase, which was identified as the small vesicle structures visible by electron microscopy in the EqtII-lipid suspensions. The toxin appears to enhance slow motions in the membrane lipids and destabilize the membrane. This effect was greatly enhanced in sphingomyelin-containing mixed lipid membranes compared with pure phosphatidylcholine bilayers, suggesting a preferential interaction between the toxin and bilayer sphingomyelin.  相似文献   
104.
A single mutation within the transmembrane region of the Neu receptor (Val664-->Glu) is known to enhance tyrosine kinase activity, by promoting receptor dimerization. In order to gain insight into potential structural changes that arise as a result of the mutation, peptides corresponding to the complete transmembrane domain of proto-oncogenic and mutant forms of Neu have been studied by 1H nuclear magnetic resonance in the solvent trifluoroethanol (TFE). The chemical shifts are similar for both forms of the peptide, with the exception of amide residues close to the mutation site. Both peptides adopt a helical conformation, with a distinct bend one turn downstream of the mutation site. This deformation gives rise to several nuclear Overhauser effects, the majority of which were detected in both peptides, that are atypical for a straight canonical alpha-helix. Our data in this solvent do not support a conformational change in the transmembrane domain of monomeric Neu as a result of the mutation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicates that proto-oncogenic Neu peptides have a higher propensity to oligomerize in the solvent TFE than the Glu664 oncogenic form.  相似文献   
105.
The present study examined the fiber-type proportions of 22 muscles spanning the shoulder and/or elbow joints of three Macaca mulatta. Fibers were classified as one of three types: fast-glycolytic (FG), fast-oxidative-glycolytic (FOG), or slow-oxidative (SO). In most muscles, the FG fibers predominated, but proportions ranged from 25-67% in different muscles. SO fibers were less abundant except in a few deep, small muscles where they comprised as much as 56% of the fibers. Cross-sectional area (CSA) of the three fiber types was measured in six different muscles. FG fibers tended to be the largest, whereas SO fibers were the smallest. While fiber-type size was not always consistent between muscles, the relative size of FG fibers was generally larger than FOG and SO fibers within the same muscle. When fiber CSA was taken into consideration, FG fibers were found to comprise over 50% of the muscle's CSA in almost all muscles.  相似文献   
106.
Lehto MT  Sharom FJ 《Biochemistry》2002,41(26):8368-8376
GPI-anchored proteins are ubiquitous on the eukaryotic cell surface, where they are involved in a variety of functions ranging from adhesion to enzymatic catalysis. Indirect evidence suggests that the GPI anchor may hold the protein close to the plasma membrane; however, there is a lack of direct information on the proximity of the protein portion of GPI-anchored proteins to the bilayer surface. The present study uses fluorescence resonance energy transfer (FRET) to address this important problem. The GPI-anchored ectoenzyme placental alkaline phosphatase (PLAP) was purified from a plasma membrane extract of human placental microsomes without the use of butanol. The protein was fluorescently labeled at the N-terminus with 7-(dimethylamino)coumarin-4-acetic acid succinimidyl ester (DMACA-SE) or Oregon Green 488 succinimidyl ester (OG488-SE), and each was reconstituted by detergent dilution into defined lipid bilayer vesicles containing an increasing mole fraction of a fluorescent lipid probe. The fluorescence of the labeled PLAP donors was quenched in a concentration-dependent manner by the lipid acceptors. The energy transfer data were analyzed using an approach that describes FRET between a uniform distribution of donors and acceptors in an infinite plane. The distance of closest approach between the protein moiety of PLAP and the lipid-water interfacial region of the bilayer was estimated to be smaller than 10-14 A. This indicates that the protein portion of PLAP is located very close to the lipid bilayer, possibly resting on the surface. This contact may allow transmission of structural changes from the membrane surface to the protein, which could influence the behavior and catalytic properties of GPI-anchored proteins.  相似文献   
107.
The sensitivity and specificity of the microscopic agglutination test (MAT) as a method for detection of exposure to Leptospira spp. in California sea lions (Zalophus californianus) were determined. Sera came from individuals that demonstrated clinical signs of renal disease, had lesions suggestive of leptospirosis at necropsy, and had visible leptospires in silver stained kidney sections as positive controls. Sera from unexposed captive individuals were used as negative controls. The test was 100% sensitive at 1:3,200 for confirming renal infection and 100% specific at negative < 1:100 for detection of Leptospira interrogans scrovar pomona antibodies by MAT in California sea lions. Leptospira interrogans serovar pomona was used as a screening serovar because it has been isolated previously from the kidneys and placentas of California sea lions, and there appears to be cross-reactivity between serovar pomona and other serovars. Sera from 225 free-ranging California sea lions presented to one of three participating California (USA) coastal marine mammal rehabilitation centers in 1996 were then evaluated for antibodies to serovar pomona using the MAT. The overall seroprevalence was 38.2% (86/225), although the prevalence varied among locations from 100% (38/38) in animals at the Marine Mammal Care Center (Fort MacArthur, California, USA) to 0% (0/14) at SeaWorld California (San Diego, California). At The Marine Mammal Center (Sausalito, California) [prevalence 27.8% (48/173)], the majority of seropositive animals were subadults and adults, and males were 4.7 times more likely to be seropositive to serovar pomona than females. When combining results from all three centers, subadult and adult animals were more likely to be seropositive than pups and juvenile sea lions, and the highest proportion of seropositive animals presented during the autumn months. Serum elevations of blood urea nitrogen, creatinine, phosphorus, and/or calcium were associated with seropositivity to serovar pomona. We found no association between potassium or sodium levels and seropositivity.  相似文献   
108.
109.
We have used GRATH, a graph-based structure comparison algorithm, to map the similarities between the different folds observed in the CATH domain structure database. Statistical analysis of the distributions of the fold similarities has allowed us to assess the significance for any similarity. Therefore we have examined whether it is best to represent folds as discrete entities or whether, in fact, a more accurate model would be a continuum wherein folds overlap via common motifs. To do this we have introduced a new statistical measure of fold similarity, termed gregariousness. For a particular fold, gregariousness measures how many other folds have a significant structural overlap with that fold, typically comprising 40% or more of the larger structure. Gregarious folds often contain commonly occurring super-secondary structural motifs, such as beta-meanders, greek keys, alpha-beta plait motifs or alpha-hairpins, which are matching similar motifs in other folds. Apart from one example, all the most gregarious folds matching 20% or more of the other folds in the database, are alpha-beta proteins. They also occur in highly populated architectural regions of fold space, adopting sandwich-like arrangements containing two or more layers of alpha-helices and beta-strands.Domains that exhibit a low gregariousness, are those that have very distinctive folds, with few common motifs or motifs that are packed in unusual arrangements. Most of the superhelices exhibit low gregariousness despite containing some commonly occurring super-secondary structural motifs. In these folds, these common motifs are combined in an unusual way and represent a small proportion of the fold (<10%). Our results suggest that fold space may be considered as continuous for some architectural arrangements (e.g. alpha-beta sandwiches), in that super-secondary motifs can be used to link neighbouring fold groups. However, in other regions of fold space much more discrete topologies are observed with little similarity between folds.  相似文献   
110.
Vitamin K uptake in hepatocytes and hepatoma cells   总被引:1,自引:0,他引:1  
Li ZQ  He FY  Stehle CJ  Wang Z  Kar S  Finn FM  Carr BI 《Life sciences》2002,70(18):2085-2100
Hepatocellular carcinoma (HCC) or hepatoma cells have impaired ability to perform vitamin K-dependent carboxylation reactions. Vitamin K can also inhibit growth of HCC cells in vitro. Both carboxylation and growth inhibition are vitamin K dose dependent. We used rat hepatocytes, a vitamin K-growth sensitive (MH7777) and a vitamin K-growth resistant (H4IIE) rat hepatoma cell line to examine vitamin K uptake and vitamin K-mediated microsomal carboxylation. We found that vitamin K is taken up by normal rat hepatocytes against a saturable concentration gradient. The relative rates of uptake by rat hepatocytes and the two rat cell lines MH7777 and H4IIE correlated with their sensitivity to vitamin K-mediated cell growth inhibition. Pooled hepatocytes from liver nodules from rats treated with the hepatocarcinogen diethylnitrosamine (DEN) also had a reduced rate of vitamin K uptake. However, using a cell-free system, microsomes from both normal rat hepatocytes and the two rat hepatoma cell lines had a similar ability to support carboxylation mediated by exogenously added vitamin K. The results support the hypothesis that different sensitivity of hepatoma cells to vitamin K may be due to differences in vitamin K uptake and may be unrelated to the actions of vitamin K on carboxylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号