首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2424篇
  免费   213篇
  国内免费   1篇
  2024年   6篇
  2023年   11篇
  2022年   12篇
  2021年   46篇
  2020年   22篇
  2019年   31篇
  2018年   35篇
  2017年   43篇
  2016年   60篇
  2015年   101篇
  2014年   122篇
  2013年   129篇
  2012年   185篇
  2011年   168篇
  2010年   115篇
  2009年   99篇
  2008年   160篇
  2007年   177篇
  2006年   148篇
  2005年   158篇
  2004年   155篇
  2003年   115篇
  2002年   124篇
  2001年   29篇
  2000年   36篇
  1999年   38篇
  1998年   30篇
  1997年   20篇
  1996年   18篇
  1995年   19篇
  1994年   17篇
  1993年   13篇
  1992年   19篇
  1991年   18篇
  1990年   14篇
  1989年   10篇
  1988年   13篇
  1987年   5篇
  1986年   7篇
  1985年   17篇
  1984年   6篇
  1983年   9篇
  1981年   7篇
  1980年   11篇
  1979年   6篇
  1978年   5篇
  1977年   12篇
  1975年   4篇
  1973年   4篇
  1972年   4篇
排序方式: 共有2638条查询结果,搜索用时 62 毫秒
81.
82.
It is often claimed that conserving evolutionary history is more efficient than species‐based approaches for capturing the attributes of biodiversity that benefit people. This claim underpins academic analyses and recommendations about the distribution and prioritization of species and areas for conservation, but evolutionary history is rarely considered in practical conservation activities. One impediment to implementation is that arguments related to the human‐centric benefits of evolutionary history are often vague and the underlying mechanisms poorly explored. Herein we identify the arguments linking the prioritization of evolutionary history with benefits to people, and for each we explicate the purported mechanism, and evaluate its theoretical and empirical support. We find that, even after 25 years of academic research, the strength of evidence linking evolutionary history to human benefits is still fragile. Most – but not all – arguments rely on the assumption that evolutionary history is a useful surrogate for phenotypic diversity. This surrogacy relationship in turn underlies additional arguments, particularly that, by capturing more phenotypic diversity, evolutionary history will preserve greater ecosystem functioning, capture more of the natural variety that humans prefer, and allow the maintenance of future benefits to humans. A surrogate relationship between evolutionary history and phenotypic diversity appears reasonable given theoretical and empirical results, but the strength of this relationship varies greatly. To the extent that evolutionary history captures unmeasured phenotypic diversity, maximizing the representation of evolutionary history should capture variation in species characteristics that are otherwise unknown, supporting some of the existing arguments. However, there is great variation in the strength and availability of evidence for benefits associated with protecting phenotypic diversity. There are many studies finding positive biodiversity–ecosystem functioning relationships, but little work exists on the maintenance of future benefits or the degree to which humans prefer sets of species with high phenotypic diversity or evolutionary history. Although several arguments link the protection of evolutionary history directly with the reduction of extinction rates, and with the production of relatively greater future biodiversity via increased adaptation or diversification, there are few direct tests. Several of these putative benefits have mismatches between the relevant spatial scales for conservation actions and the spatial scales at which benefits to humans are realized. It will be important for future work to fill in some of these gaps through direct tests of the arguments we define here.  相似文献   
83.
Diffuse reflectance spectroscopy (DRS) is a noninvasive, fast, and low‐cost technology with potential to assist cancer diagnosis. The goal of this study was to test the capability of our physiological model, a computational Monte Carlo lookup table inverse model, for nonmelanoma skin cancer diagnosis. We applied this model on a clinical DRS dataset to extract scattering parameters, blood volume fraction, oxygen saturation and vessel radius. We found that the model was able to capture physiological information relevant to skin cancer. We used the extracted parameters to classify (basal cell carcinoma [BCC], squamous cell carcinoma [SCC]) vs actinic keratosis (AK) and (BCC, SCC, AK) vs normal. The area under the receiver operating characteristic curve achieved by the classifiers trained on the parameters extracted using the physiological model is comparable to that of classifiers trained on features extracted via Principal Component Analysis. Our findings suggest that DRS can reveal physiologic characteristics of skin and this physiologic model offers greater flexibility for diagnosing skin cancer than a pure statistical analysis. Physiological parameters extracted from diffuse reflectance spectra data for nonmelanoma skin cancer diagnosis.  相似文献   
84.
85.
The glycosomes of trypanosomatids are essential organelles that are evolutionarily related to peroxisomes of other eukaryotes. The peroxisomal RING proteins-PEX2, PEX10 and PEX12-comprise a network of integral membrane proteins that function in the matrix protein import cycle. Here, we describe PEX10 and PEX12 in Trypanosoma brucei, Leishmania major, and Trypanosoma cruzi. We expressed GFP fusions of each T. brucei coding region in procyclic form T. brucei, where they localized to glycosomes and behaved as integral membrane proteins. Despite the weak transmembrane predictions for TbPEX12, protease protection assays demonstrated that both the N and C termini are cytosolic, similar to mammalian PEX12. GFP fusions of T. cruzi PEX10 and L. major PEX12 also localized to glycosomes in T. brucei indicating that glycosomal membrane protein targeting is conserved across trypanosomatids.  相似文献   
86.
The hyaluronan (HA) synthase, PmHAS, and the chondroitin synthase, PmCS, from the Gram-negative bacterium Pasteurella multocida polymerize the glycosaminoglycan (GAG) sugar chains HA or chondroitin, respectively. The recombinant Escherichia coli-derived enzymes were shown previously to elongate exogenously supplied oligosaccharides of their cognate GAG (e.g. HA elongated by PmHAS). Here we show that oligosaccharides and polysaccharides of certain noncognate GAGs (including sulfated and iduronic acid-containing forms) are elongated by PmHAS (e.g. chondroitin elongated by PmHAS) or PmCS. Various acceptors were tested in assays where the synthase extended the molecule with either a single monosaccharide or a long chain (approximately 10(2-4) sugars). Certain GAGs were very poor acceptors in comparison to the cognate molecules, but elongated products were detected nonetheless. Overall, these findings suggest that for the interaction between the acceptor and the enzyme (a) the orientation of the hydroxyl at the C-4 position of the hexosamine is not critical, (b) the conformation of C-5 of the hexuronic acid (glucuronic versus iduronic) is not crucial, and (c) additional negative sulfate groups are well tolerated in certain cases, such as on C-6 of the hexosamine, but others, including C-4 sulfates, were not or were poorly tolerated. In vivo, the bacterial enzymes only process unsulfated polymers; thus it is not expected that the PmCS and PmHAS catalysts would exhibit such relative relaxed sugar specificity by acting on a variety of animal-derived sulfated or epimerized GAGs. However, this feature allows the chemoenzymatic synthesis of a variety of chimeric GAG polymers, including mimics of proteoglycan complexes.  相似文献   
87.
88.
Objective: Obesity has been proposed to negatively impact cardiac function in overweight (OW) individuals. The relationship between diastolic dysfunction and oxygen uptake (V?o 2) kinetics is equivocal. This exploratory investigation evaluated the relationship between resting left ventricular function and V?o 2 kinetics during cycle ergometry in OW and non‐overweight (NO) children and adolescents. Research Methods and Procedures: Fourteen OW (>85 percentile for BMI for age and gender) children, 10 boys and 4 girls (age, 11.7 ± 1.9 years; body mass, 80.6 ± 45.5 kg) and 10 NO children (4 boys, 6 girls) volunteered to participate in the study (age, 12.5 ± 2.1 years; body mass, 45.8 ± 13.8 kg). Resting cardiovascular structure and function were assessed using spectral Doppler echocardiography. All subjects underwent two sub‐maximal exercise stages on a cycle ergometer (3 minutes unloaded and 5 minutes at 50 W, both at a cadence of 50 rpm). Respiratory data were measured on a breath‐by‐breath basis at both workloads and the mean response time (MRT) was calculated. Results: Analysis of the MRT data demonstrated that there were no significant differences between OW and NO (OW, 52.6 ± 11.7 seconds vs. NO, 45.6 ± 7.4 seconds). Significant correlations (p < 0.05) were obtained between MRT V?o 2 and echocardiographic‐derived mitral valve inflow pressure half‐time (r = 0.55) and between MRT V?o 2, and mitral valve inflow deceleration time (r = 0.55). Discussion: The evidence from this research suggests a possible link between left ventricular diastolic function at rest and oxygen uptake kinetics during sub‐maximal exercise in OW and NO children and adolescents.  相似文献   
89.
Recent data have revealed that epigenetic alterations, including DNA methylation and chromatin structure changes, are among the earliest molecular abnormalities to occur during tumorigenesis. The inherent thermodynamic stability of cytosine methylation and the apparent high specificity of the alterations for disease may accelerate the development of powerful molecular diagnostics for cancer. We report a genome-wide analysis of DNA methylation alterations in breast cancer. The approach efficiently identified a large collection of novel differentially DNA methylated loci (approximately 200), a subset of which was independently validated across a panel of over 230 clinical samples. The differential cytosine methylation events were independent of patient age, tumor stage, estrogen receptor status or family history of breast cancer. The power of the global approach for discovery is underscored by the identification of a single differentially methylated locus, associated with the GHSR gene, capable of distinguishing infiltrating ductal breast carcinoma from normal and benign breast tissues with a sensitivity and specificity of 90% and 96%, respectively. Notably, the frequency of these molecular abnormalities in breast tumors substantially exceeds the frequency of any other single genetic or epigenetic change reported to date. The discovery of over 50 novel DNA methylation-based biomarkers of breast cancer may provide new routes for development of DNA methylation-based diagnostics and prognostics, as well as reveal epigenetically regulated mechanism involved in breast tumorigenesis.  相似文献   
90.

Pedicularis dudleyi (Dudley’s Lousewort, Orobanchaceae) is an extremely rare plant endemic to the redwood forests of Central California. Until recently, the species was known only from three extant natural populations. However, in 2019, one of those populations was described as a novel species (P. rigginsiae D.J. Keil) based on morphological and ecological data leaving only two populations described as P. dudleyi. While little is known about the past distribution of the species, historical records have led to speculation that the species was once more widespread and may have suffered from habitat destruction as a result of widespread logging during the early twentieth century. We utilized a combination of ddRAD SNP and Sanger sequencing data to: (1) Test the morphological hypothesis that P. rigginsiae is distinct from P. dudleyi; (2) Describe the genetic diversity and population structure of P. dudleyi and; (3) Test the hypothesis that the species underwent a bottleneck corresponding with increased logging of redwood forests in the early twentieth century. Our results support the recognition of P. rigginsiae as distinct from P. dudleyi, increasing the conservation priority of both species. Genetic diversity statistics and analyses of genetic structure suggest that both populations of P. dudleyi are highly differentiated from each other with one population exhibiting unexpected substructure. Finally, demographic modeling supports a scenario where the contemporary rarity of the species is explained by a recent bottleneck.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号