首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   8篇
  2021年   1篇
  2018年   2篇
  2015年   3篇
  2014年   2篇
  2013年   8篇
  2012年   8篇
  2011年   8篇
  2010年   4篇
  2009年   1篇
  2008年   7篇
  2007年   9篇
  2006年   4篇
  2005年   4篇
  2004年   10篇
  2003年   4篇
  2002年   6篇
  2001年   6篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1975年   2篇
  1974年   2篇
  1971年   2篇
  1967年   1篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
71.
Self-association of Calcium-binding Protein S100A4 and Metastasis   总被引:1,自引:0,他引:1  
Elevated levels of the calcium-binding protein S100A4 promote metastasis and in carcinoma cells are associated with reduced survival of cancer patients. S100A4 interacts with target proteins that affect a number of activities associated with metastatic cells. However, it is not known how many of these interactions are required for S100A4-promoted metastasis, thus hampering the design of specific inhibitors of S100A4-induced metastasis. Intracellular S100A4 exists as a homodimer through previously identified, well conserved, predominantly hydrophobic key contacts between the subunits. Here it is shown that mutating just one key residue, phenylalanine 72, to alanine is sufficient to reduce the metastasis-promoting activity of S100A4 to 50% that of the wild type protein, and just 2 or 3 specific mutations reduces the metastasis-promoting activity of S100A4 to less than 20% that of the wild type protein. These mutations inhibit the self-association of S100A4 in vivo and reduce markedly the affinity of S100A4 for at least two of its protein targets, a recombinant fragment of non-muscle myosin heavy chain isoform A, and p53. Inhibition of the self-association of S100 proteins might be a novel means of inhibiting their metastasis-promoting activities.  相似文献   
72.
An S-adenosyl-L-methionine-dependent O-methyltransferase capable of methylating 2-hydroxy-3-alkylpyrazine (HP) was purified 7,300-fold to apparent homogeneity with an 8.2% overall recovery from Vitis vinifera L. (cv. Cabernet Sauvignon) through a purification procedure including column chromatography on DEAE-Sepharose FF, Ether-5PW, hydroxyapatite, G2000SW(XL), and DEAE-5PW. The relative molecular mass of the native enzyme estimated on gel permeation chromatography was 85 kDa, and the subunit molecular mass was estimated to be 41 kDa on SDS-polyacrylamide gel electrophoresis. The enzyme also methylates caffeic acid. The Vmax for IBHP and caffeic acid were 0.73 and 175 pkatals/mg, respectively, and the respective Km for IBHP and caffeic acid were 0.30 and 0.032 mm. The optimum pH for IBHP (8.5) was different from that for caffeic acid (7.5).  相似文献   
73.
We previously reported Chk1 to be phosphorylated at Ser286 and Ser301 by cyclin-dependent kinase (Cdk) 1 during mitosis [T. Shiromizu et al., Genes Cells 11 (2006) 477-485]. Here, we demonstrated that Chk1-Ser286 and -Ser301 phosphorylation also occurs in hydroxyurea (HU)-treated or ultraviolet (UV)-irradiated cells. Unlike the mitosis case, however, Chk1 was phosphorylated not only at Ser286 and Ser301 but also at Ser317 and Ser345 in the checkpoint response. Treatment with Cdk inhibitors diminished Chk1 phosphorylation at Ser286 and Ser301 but not at Ser317 and Ser345 with the latter. In vitro analyses revealed Ser286 and Ser301 on Chk1 to serve as two major phosphorylation sites for Cdk2. Immunoprecipitation analyses further demonstrated that Ser286/Ser301 and Ser317/Ser345 phosphorylation occur in the same Chk1 molecule during the checkpoint response. In addition, Ser286/Ser301 phosphorylation by Cdk2 was observed in Chk1 mutated to Ala at Ser317 and Ser345 (S317A/S345A), as well as Ser317/Ser345 phosphorylation by ATR was in S286A/S301A. Therefore, Chk1 phosphorylation in the checkpoint response is regulated not only by ATR but also by Cdk2.  相似文献   
74.
Bacterial alarmone (p)ppGpp, is a global regulator responsible for the stringent control. Two homologous (p)ppGpp synthetases, RelA and SpoT, have been identified and characterized in Escherichia coli, whereas Gram-positive bacteria such as Bacillus subtilis have been thought to possess only a single RelA-SpoT enzyme. We have now identified two genes, yjbM and ywaC, in B. subtilis that encode a novel type of alarmone synthetase. The predicted products of these genes are relatively small proteins ( approximately 25 kDa) that correspond to the (p)ppGpp synthetase domain of RelA-SpoT family members. A database survey revealed that genes homologous to yjbM and ywaC are conserved in certain bacteria belonging to Firmicutes or Actinobacteria phyla but not in other phyla such as Proteobacteria. We designated the proteins as small alarmone synthetases (SASs) to distinguish them from RelA-SpoT proteins. The (p)ppGpp synthetase function of YjbM and YwaC was confirmed by genetic complementation analysis and by in vitro assay of enzyme activity. Molecular genetic analysis also revealed that ywaC is induced by alkaline shock, resulting in the transient accumulation of ppGpp. The SAS proteins thus likely function in the biosynthesis of alarmone with a mode of action distinct from that of RelA-SpoT homologues.  相似文献   
75.
76.
Abetalipoproteinemia (ABL) is an inherited disease characterized by the virtual absence of apolipoprotein B (apoB)-containing lipoproteins from plasma. Only limited numbers of families have been screened for mutations in the microsomal triglyceride transfer protein (MTP) gene. To clarify the genetic basis of clinical diversity of ABL, mutations of the MTP gene have been screened in 4 unrelated patients with ABL. Three novel mutations have been identified: a frameshift mutation caused by a single adenine deletion at position 1389 of the cDNA, and a missense mutation, Asn780Tyr, each in homozygous forms; and a splice site mutation, 2218-2A-->G, in a compound heterozygous form. The frameshift and splice site mutations are predicted to encode truncated forms of MTP. When transiently expressed in Cos-1 cells, the Asn780Tyr mutant MTP bound protein disulfide isomerase (PDI) but displayed negligible MTP activity. It is of interest that the patient having the Asn780Tyr mutation, a 27-year-old male, has none of the manifestations characteristic of classic ABL even though his plasma apoB and vitamin E were virtually undetectable. These results indicated that defects of the MTP gene are the proximal cause of ABL.  相似文献   
77.
In order to elucidate the antiatherogenic effects of pioglitazone (a peroxisome proliferator-activated receptor [PPAR]gamma agonist with PPARalpha agonistic activity) and rosiglitazone (a more selective PPARgamma agonist), we examined gene expression and cholesteryl ester accumulation in THP-1-derived macrophages. Pioglitazone enhanced the mRNA expression of the proatherogenic factors CD36 and adipophilin, but was approximately 10 times less potent than rosiglitazone. The potencies of the two agents appeared to correspond to their PPARgamma agonistic activities in this respect. However, both agents were similarly potent in enhancing the mRNA expression of the antiatherogenic factors liver X receptor alpha and ATP-binding cassette-transporter A1. Furthermore, both agents enhanced cholesteryl ester hydrolase mRNA expression and inhibited acyl-CoA cholesterol acyltransferase-1 mRNA expression and cholesteryl ester accumulation in macrophages. In this respect, their potencies appeared to correspond to their PPARalpha agonistic activities. These results suggest that pioglitazone has an equally beneficial effect on antiatherogenic events to rosiglitazone, despite being almost 10 times less potent than a PPARgamma agonist.  相似文献   
78.
The 61 kDa colicin E9 protein toxin enters the cytoplasm of susceptible cells by interacting with outer membrane and periplasmic helper proteins, and kills them by hydrolysing their DNA. The membrane translocation function is located in the N-terminal domain of the colicin, with a key signal sequence being a pentapeptide region that governs the interaction with the helper protein TolB (the TolB box). Previous NMR studies (Collins et al., 2002 J. Mol. Biol. 318, 787-804) have shown that the N-terminal 83 residues of colicin E9, which includes the TolB box, is largely unstructured and highly flexible. In order to further define the properties of this region we have studied a fusion protein containing residues 1-61 of colicin E9 connected to the N-terminus of the E9 DNase by an eight-residue linking sequence. 53 of the expected 58 backbone NH resonances for the first 61 residues and all of the expected 7 backbone NH resonances of the linking sequence were assigned with 3D (1)H-(13)C-(15)N NMR experiments, and the backbone dynamics of these regions investigated through measurement of (1)H-(15)N relaxation properties. Reduced spectral density mapping, extended Lipari-Szabo modelling, and fitting backbone R(2) relaxation rates to a polymer dynamics model identifies three clusters of interacting residues, each containing a tryptophan. Each of these clusters is perturbed by TolB binding to the intact colicin, showing that the significant region for TolB binding extends beyond the recognized five amino acids of the TolB box and demonstrating that the binding epitope for TolB involves a considerable degree of order within an otherwise disordered and flexible domain. Abbreviations : Im9, the immunity protein for colicin E9; E9 DNase, the endonuclease domain of colicin E9; HSQC, heteronuclear single quantum coherence; ppm, parts per million; DSS, 2,2-(dimethylsilyl)propanesulfonic acid; TSP, sodium 3-trimethylsilypropionate; T(1 - 61)-DNase fusion protein, residues 1-61 of colicin E9 connected to the N-terminus of the E9 DNase by an eight residue thrombin cleavage sequence.  相似文献   
79.
Two new murine monoclonal IgG1 antibodies, H-31 and H-A26, were characterized in comparison with two previously obtained monoclonal antibodies against human interleukin 2 (IL-2) receptor (IL-2 R), anti-Tac and HIEI. In immunofluorescence assays with various human hematopoietic cells, H-31 and H-A26 antibodies both reacted with only IL-2 R-positive cells, and they precipitated IL-2 R molecules, glycoproteins with molecular weights of 60K and 53K daltons (gp60/gp53), from human T-cell leukemia virus type I (HTLV-I)-carrying MT-2 cells, as demonstrated by sequential immunoprecipitation after absorption of IL-2 R with anti-Tac. Antibody-binding competition assays showed that H-31 and anti-Tac, and H-A26 and HIEI, respectively, competed reciprocally in binding to the cells, and that anti-Tac also inhibited the binding of HIEI but not vice versa. H-31, like anti-Tac, strongly inhibited the IL-2-dependent proliferation of normal activated T-cells, absorption of IL-2 and direct binding of IL-2 to the cells, while H-A26, like HIEI, inhibited those processes only weakly. The spectra of reactivities of these antibodies with various simian cell lines derived by HTLV-I infection were different, as revealed by immunofluorescence studies. Human IL-2 R was shown to express a unique antigenic determinant, detected with HIEI, that was not detectable in IL-2 R molecules of Old and New World monkeys, and also to express determinants common to simian IL-2 R molecules. These observations indicate that H-31 and H-A26 recognize human IL-2 R molecules and that the antigenic sites on the IL-2 R molecule defined by H-31, H-A26, anti-Tac, and HIEI are different.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号