首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   18篇
  2022年   2篇
  2021年   6篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2012年   7篇
  2011年   5篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   10篇
  1999年   4篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1988年   6篇
  1987年   4篇
  1986年   3篇
  1984年   1篇
  1983年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
81.
An Escherichia coli gene bank composed of large DNA fragments (about 40 kilobases) was constructed by using the small cosmid pHC79. From it, a clone was isolated for its ability to overproduce superoxide dismutase. The enzyme overproduced was manganese superoxide dismutase, as determined by electrophoresis and antibody precipitation. Maxicell analysis and two-dimensional O'Farrell polyacrylamide gel electrophoresis demonstrated that the structural gene, sodA, of manganese superoxide dismutase was cloned. Subcloning fragments from the original cosmid located the sodA gene within a 4.8-kilobase EcoRI-BamHI fragment. This fragment was inserted into a lambda phage which was deleted for the att region and consequently could only lysogenize by recombination between the cloned bacterial DNA insertion and the bacterial chromosome. Genetic mapping of the prophage in such lysogens indicated that the chromosomal sodA locus lies near 87 min on the E. coli map.  相似文献   
82.
The Escherichia coli Fur protein, with its iron(II) cofactor, represses iron assimilation and manganese superoxide dismutase (MnSOD) genes, thus coupling iron metabolism to protection against oxygen toxicity. Iron assimilation is triggered by iron starvation in wild-type cells and is constitutive in fur mutants. We show that iron metabolism deregulation in fur mutants produces an iron overload, leading to oxidative stress and DNA damage including lethal and mutagenic lesions. fur recA mutants were not viable under aerobic conditions and died after a shift from anaerobiosis to aerobiosis. Reduction of the intracellular iron concentration by an iron chelator (ferrozine), by inhibition of ferric iron transport (tonB mutants), or by overexpression of the iron storage ferritin H-like (FTN) protein eliminated oxygen sensitivity. Hydroxyl radical scavengers dimethyl sulfoxide and thiourea also provided protection. Functional recombinational repair was necessary for protection, but SOS induction was not involved. Oxygen-dependent spontaneous mutagenesis was significantly increased in fur mutants. Similarly, SOD deficiency rendered sodA sodB recA mutants nonviable under aerobic conditions. Lethality was suppressed by tonB mutations but not by iron chelation or overexpression of FTN. Thus, superoxide-mediated iron reduction was responsible for oxygen sensitivity. Furthermore, overexpression of SOD partially protected fur recA mutants. We propose that a transient iron overload, which could potentially generate oxidative stress, occurs in wild-type cells on return to normal growth conditions following iron starvation, with the coupling between iron and MnSOD regulation helping the cells cope.  相似文献   
83.
We have investigated the mechanisms of killing of Escherichia coli by HOCl by identifying protective functions. HOCl challenges were performed on cultures arrested in stationary phase and in exponential phase. Resistance to HOCl in both cases was largely mediated by genes involved in resistance to hydrogen peroxide (H2O2). In stationary phase, a mutation in rpoS, which controls the expression of starvation genes including those which protect against oxidative stress, renders the cells hypersensitive to killing by HOCl. RpoS-regulated genes responsible for this sensitivity were dps, which encodes a DNA-binding protein, and, to a lesser extent, katE and katG, encoding catalases; all three are involved in resistance to H2O2. In exponential phase, induction of the oxyR regulon, an adaptive response to H2O2, protected against HOCl exposure, and the oxyR2 constitutive mutant is more resistant than the wild-type strain. The genes involved in this oxyR-dependent resistance have not yet been identified, but they differ from those primarily involved in resistance to H2O2, including katG, ahp, and dps. Pretreatment with HOCl conferred resistance to H2O2 in an OxyR-independent manner, suggesting a specific adaptive response to HOCl. fur mutants, which have an intracellular iron overload, were more sensitive to HOCl, supporting the generation of hydroxyl radicals upon HOCl exposure via a Fenton-type reaction. Mutations in recombinational repair genes (recA or recB) increased sensitivity to HOCl, indicative of DNA strand breaks. Sensitivity was visible in the wild type only at concentrations above 0.6 mg/liter, but it was observed at much lower concentrations in dps recA mutants.  相似文献   
84.
The expression of sodA, the Escherichia coli gene encoding manganese superoxide dismutase (MnSOD) is induced by aerobiosis and superoxide generators such as paraquat. Analysis of variants expressing sodA in the absence of oxygen has revealed that mutations in genes for two global regulatory systems, Fur (ferric uptake regulation) and Arc (aerobic respiration control), are simultaneously required for the expression of sodA in anaerobiosis. The Fur protein still represses sodA in an iron-dependent fashion in aerobiosis. Moreover, all mutants remain inducible by paraquat, indicating that the positive control of SoxR, which mediates the response to superoxide in E. coli, is still operative. Thus, in addition to the response to the superoxide-mediated oxidative stress which depends on SoxR, two global controls regulate MnSOD expression: ArcA couples MnSOD expression to respiration, and Fur couples it to the intracellular concentration of iron.  相似文献   
85.
A series of 13 hydroxylated 2-arylnaphthalenes have been synthesized and evaluated as HIV-1 integrase inhibitors. 7-(3,4,5-Trihydroxyphenyl)naphthalene-1,2,3-triol 1c revealed chemical instability upon storage, leading to the isolation of a dimer 5c which was also tested. In the 2-arylnaphthalene series, all compounds were active against HIV-1 IN with IC50’s within the 1–10 μM range, except for 1c and 5c which displayed submicromolar activity. Antiviral activity against HIV-1 replication was measured on 1bc and 5c. Amongst the tested molecules, only 5c was found to present antiviral properties with a low cytotoxicity on two different cell lines.  相似文献   
86.
An intronic point mutation was identified in the E1alpha PDH gene from a boy with delayed development and lactic acidosis, an X-linked disorder associated with a partial defect in pyruvate dehydrogenase (PDH) activity. Protein analysis demonstrated a corresponding decrease in immunoreactivity of the alpha and beta subunits of the PDH complex. In addition to the normal spliced mRNA product of the E1alpha PDH gene, patient samples contained significant levels of an aberrantly spliced mRNA with the first 45 nucleotides of intron 7 inserted in-frame between exons 7 and 8. The genomic DNA analysis found no mutation in the coding regions but revealed a hemizygous intronic G to A substitution 26 nucleotides downstream from the normal exon 7 5'-splice site. Splicing experiments in COS-7 cells demonstrated that this point mutation at intron 7 position 26 is responsible for the aberrant splicing phenotype, which involves a switch from the use of the normal 5'-splice site (intron 7 position 1) to the cryptic 5'-splice site downstream of the mutation (intron 7 position 45). The intronic mutation is unusual in that it generates a consensus binding motif for the splicing factor, SC35, which normally binds to exonic enhancer elements resulting in increased exon inclusion. Thus, the aberrant splicing phenotype is most likely explained by the generation of a de novo splicing enhancer motif, which activates the downstream cryptic 5'-splice site. The mutation documented here is a novel case of intron retention responsible for a human genetic disease.  相似文献   
87.
Mitochondrial respiratory chain complex III (ubiquinol-cytochrome c reductase) consists of 11 subunits, only one (cytochrome b) being encoded by the mitochondrial DNA. Disorders of complex III are comparatively rare but are nevertheless present as a clinically heterogeneous group of diseases. To date, no mutation in any of the nuclear-encoded subunits has been described. We report here a deletion in the nuclear gene UQCRB encoding the human ubiquinone-binding protein of complex III (QP-C subunit or subunit VII) in a consanguineous family with an isolated complex III defect. In the proband, a homozygous 4-bp deletion was identified at nucleotides 338-341 of the cDNA predicting both a change in the last seven amino acids and an addition of a stretch of 14 amino acids at the C-terminal end of the protein. Both parents were found to be heterozygous for the deletion, which was absent from 55 controls. Low temperature (-196 degrees C) spectral studies performed on isolated mitochondria from cultured skin fibroblast of the proband showed a decreased cytochrome b content suggestive of a role for the QP-C subunit in the assembly or maintenance of complex III structure.  相似文献   
88.
Superoxide reductase (SOR) is a small metalloenzyme that catalyzes reduction of O(2)(*)(-) to H(2)O(2) and thus provides an antioxidant mechanism against superoxide radicals. Its active site contains an unusual mononuclear ferrous center, which is very efficient during electron transfer to O(2)(*)(-) [Lombard, M., Fontecave, M., Touati, D., and Nivière, V. (2000) J. Biol. Chem. 275, 115-121]. The reaction of the enzyme from Desulfoarculus baarsii with superoxide was studied by pulse radiolysis methods. The first step is an extremely fast bimolecular reaction of superoxide reductase with superoxide, with a rate constant of (1.1 +/- 0.3) x 10(9) M(-1) s(-1). A first intermediate is formed which is converted to a second one at a much slower rate constant of 500 +/- 50 s(-1). Decay of the second intermediate occurs with a rate constant of 25 +/- 5 s(-1). These intermediates are suggested to be iron-superoxide and iron-peroxide species. Furthermore, the role of glutamate 47 and lysine 48, which are the closest charged residues to the vacant sixth iron coordination site, has been investigated by site-directed mutagenesis. Mutation of glutamate 47 into alanine has no effect on the rates of the reaction. On the contrary, mutation of lysine 48 into an isoleucine led to a 20-30-fold decrease of the rate constant of the bimolecular reaction, suggesting that lysine 48 plays an important role during guiding and binding of superoxide to the iron center II. In addition, we report that expression of the lysine 48 sor mutant gene hardly restored to a superoxide dismutase-deficient Escherichia coli mutant the ability to grow under aerobic conditions.  相似文献   
89.
In nitrogen-poor soils, rhizobia elicit nodule formation on legume roots, within which they differentiate into bacteroids that fix atmospheric nitrogen. Protection against reactive oxygen species (ROS) was anticipated to play an important role in Rhizobium-legume symbiosis because nitrogenase is extremely oxygen sensitive. We deleted the sodA gene encoding the sole cytoplasmic superoxide dismutase (SOD) of Sinorhizobium meliloti. The resulting mutant, deficient in superoxide dismutase, grew almost normally and was only moderately sensitive to oxidative stress when free living. In contrast, its symbiotic properties in alfalfa were drastically affected. Nitrogen-fixing ability was severely impaired. More strikingly, most SOD-deficient bacteria did not reach the differentiation stage of nitrogen-fixing bacteroids. The SOD-deficient mutant nodulated poorly and displayed abnormal infection. After release into plant cells, a large number of bacteria failed to differentiate into bacteroids and rapidly underwent senescence. Thus, bacterial SOD plays a key protective role in the symbiotic process.  相似文献   
90.
High-throughput sequencing is increasingly being used in combination with bisulfite (BS) assays to study DNA methylation at nucleotide resolution. Although several programmes provide genome-wide alignment of BS-treated reads, the resulting information is not readily interpretable and often requires further bioinformatic steps for meaningful analysis. Current post-alignment BS-sequencing programmes are generally focused on the gene-specific level, a restrictive feature when analysis in the non-coding regions, such as enhancers and intergenic microRNAs, is required. Here, we present Genome Bisulfite Sequencing Analyser (GBSA—http://ctrad-csi.nus.edu.sg/gbsa), a free open-source software capable of analysing whole-genome bisulfite sequencing data with either a gene-centric or gene-independent focus. Through analysis of the largest published data sets to date, we demonstrate GBSA’s features in providing sequencing quality assessment, methylation scoring, functional data management and visualization of genomic methylation at nucleotide resolution. Additionally, we show that GBSA’s output can be easily integrated with other high-throughput sequencing data, such as RNA-Seq or ChIP-seq, to elucidate the role of methylated intergenic regions in gene regulation. In essence, GBSA allows an investigator to explore not only known loci but also all the genomic regions, for which methylation studies could lead to the discovery of new regulatory mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号