首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3713篇
  免费   163篇
  国内免费   3篇
  2022年   10篇
  2021年   33篇
  2020年   14篇
  2019年   20篇
  2018年   30篇
  2017年   25篇
  2016年   42篇
  2015年   66篇
  2014年   86篇
  2013年   325篇
  2012年   188篇
  2011年   171篇
  2010年   110篇
  2009年   106篇
  2008年   188篇
  2007年   205篇
  2006年   210篇
  2005年   217篇
  2004年   225篇
  2003年   246篇
  2002年   233篇
  2001年   71篇
  2000年   42篇
  1999年   56篇
  1998年   57篇
  1997年   53篇
  1996年   40篇
  1995年   40篇
  1994年   42篇
  1993年   28篇
  1992年   61篇
  1991年   43篇
  1990年   38篇
  1989年   28篇
  1988年   49篇
  1987年   34篇
  1986年   27篇
  1985年   33篇
  1984年   39篇
  1983年   36篇
  1982年   47篇
  1981年   37篇
  1980年   30篇
  1979年   20篇
  1978年   20篇
  1977年   22篇
  1976年   20篇
  1975年   20篇
  1974年   17篇
  1973年   12篇
排序方式: 共有3879条查询结果,搜索用时 15 毫秒
951.
952.
953.
3-Methyladenine (3-MA), a well-known inhibitor of autophagic sequestration, can also prevent class III phosphatidylinositide (PI) 3-kinase activity, which is required for many processes in endosomal membrane trafficking. Although much is known about the effects of other PI 3-kinase inhibitors, such as wortmannin and LY294002, on endosomal membrane trafficking, little is known about those of 3-MA. Here we show that the treatment of cells with 3-MA results in a specific redistribution of the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor (MPR300) from the trans-Golgi network (TGN) to early/recycling endosomal compartments containing internalized transferrin. Importantly, in contrast to wortmannin and LY294002, 3-MA did not cause the enlargement of late endosomal/lysosomal compartments. The results suggest that the effect of 3-MA is restricted to the retrieval of MPR300 from early/recycling endosomes.  相似文献   
954.
Lateral interaction is an important feature of various types of cell surface receptors including the receptor tyrosine kinases (RTKs). Here we report that dynamic lateral interaction produces amplification and variation in signalling of the EGF receptor, a member of RTKs. Binding of EGF is known to induce transphosphorylation inside EGFR dimers. Using single-molecule techniques, the relationship between EGF binding and EGFR phosphorylation has been determined. The number of phosphorylated EGFR molecules became larger than that of EGF binding as unliganded EGFR was phosphorylated, meaning an amplification of EGF signalling. EGFR formed clusters continuously exchanging their elements through thermal diffusion, and direct and/or indirect lateral interactions. As a result, various types of activation sites differing in number of activated receptors were generated. Amplification required no cytoplasmic factors and was observed on semi-intact cells for a wide range of number of EGFR molecules (10(4)-10(6) per cell) suggesting generality of this process.  相似文献   
955.
Pleurotolysin, a sphingomyelin-specific cytolysin consisting of A (17 kDa) and B (59 kDa) components from the basidiomycete Pleurotus ostreatus, assembles into a transmembrane pore complex. Here, we cloned complementary and genomic DNAs encoding pleurotolysin, and studied pore-forming properties of recombinant proteins. The genomic regions encoding pleurotolysin A and B contained two and eight introns, respectively, and putative promoter sequences. The complementary DNA (cDNA) for pleurotolysin A encoded 138 amino acid residues, and the predicted product was identical with natural pleurotolysin A, except for the presence of the first methionine. Recombinant pleurotolysin A lacking the first methionine was purified as a 17-kDa protein with sphingomyelin-binding activity. The cDNA for pleurotolysin B encoded a precursor consisting of 523 amino acid residues, of which N-terminal 48 amino acid residues were absent in natural pleurotolysin B. Mature and precursor forms of pleurotolysin B were expressed as insoluble 59- and 63-kDa proteins, respectively, which were unfolded with 8 M urea and refolded by 100-fold dilution with 10 mM Tris-HCl buffer, pH 8.5. Although neither recombinant pleurotolysin A nor B alone was hemolytically active at higher concentrations of up to 100 mg/ml, they cooperatively assembled into a membrane pore complex on human erythrocytes and lysed the cell as efficiently as the natural proteins at nanomolar concentrations. In contrast, the precursor of pleurotolysin B was much less hemolytically active than mature pleurotolysin B in the presence of pleurotolysin A.  相似文献   
956.
Human inducible nitric oxide synthase (iNOS) is most readily observed in macrophages from patients with inflammatory diseases like atherosclerosis. The aim of the present study was to find out the combined effect of male sex hormone; testosterone and apocynin (NADPH oxidase inhibitor) on cytokine-induced iNOS production. THP-1 cells were differentiated into macrophages by phorbol myristate acetate (PMA). Expression of iNOS was induced by the addition of cytokine mixture? Testosterone was added at different concentrations (10(-6)-10(-12) M) with apocynin (1 mM). Testosterone (10(-8), 10(-10) M) inhibited NOx production in cytokine-added THP-1 cells which was further confirmed by quantikine assay of iNOS protein and RT-PCR analysis. Testosterone treatment decreased 40% of superoxide anion production. Testosterone showed inhibition of NADPH oxidase, especially expression of p67phox and p47phox (cytosol subunits). Addition of testosterone with apocynin further decreased the expression of p67phox and p47phox subunits of NADPH oxidase. The findings of the present study suggest that, testosterone; the male androgen plays an important role in the prevention of atherogenesis. Even though apocynin does not have any role on NO production, addition of apocynin together with testosterone is effective in suppressing iNOS activity.  相似文献   
957.
Acetic acid treatment has been frequently used to remove cellular contaminants from plant chromosome samples for structural analyses by scanning electron microscopy and atomic force microscopy (AFM). We evaluated the effects of various concentrations of acetic acid treatments on barley chromosome structures by using AFM. The long-term 45% acetic acid treatment significantly damaged the chromosome structures, although the treatment effectively removed the cellular contaminants. On the other hand, the treatment with 15% acetic acid could not obtain sufficiently clean chromosome samples and the chromosome surface structures could not be observed. In contrast, we obtained clean chromosome preparation without severe damage by using an intermediate concentration (30%) of acetic acid treatment. In the centromeric region, we could observe fiber structures with a width of 100 nm, which were composed of ca. 50-nm granules and aligned to the axes of chromosomes. Thus, AFM analysis of chromosomes appropriately treated with acetic acid will provide important insights into the organization of higher-order structures of plant chromosomes.  相似文献   
958.
Myosin VI is a two-headed molecular motor that moves along an actin filament in the direction opposite to most other myosins. Previously, a single myosin VI molecule has been shown to proceed with steps that are large compared to its neck size: either it walks by somehow extending its neck or one head slides along actin for a long distance before the other head lands. To inquire into these and other possible mechanism of motility, we suspended an actin filament between two plastic beads, and let a single myosin VI molecule carrying a bead duplex move along the actin. This configuration, unlike previous studies, allows unconstrained rotation of myosin VI around the right-handed double helix of actin. Myosin VI moved almost straight or as a right-handed spiral with a pitch of several micrometers, indicating that the molecule walks with strides slightly longer than the actin helical repeat of 36 nm. The large steps without much rotation suggest kinesin-type walking with extended and flexible necks, but how to move forward with flexible necks, even under a backward load, is not clear. As an answer, we propose that a conformational change in the lifted head would facilitate landing on a forward, rather than backward, site. This mechanism may underlie stepping of all two-headed molecular motors including kinesin and myosin V.  相似文献   
959.
Self-assembling, pore-forming cytolysins are illustrative molecules for the study of the assembly and membrane insertion of transmembrane pores. Here we purified pleurotolysin, a novel sphingomyelin-specific two-component cytolysin from the basidiocarps of Pleurotus ostreatus and studied the pore-forming properties of the cytolysin. Pleurotolysin consisted of non-associated A (17 kDa) and B (59 kDa) components, which cooperatively caused leakage of potassium ions from human erythrocytes and swelling of the cells at nanomolar concentrations, leading to colloid-osmotic hemolysis. Hemolytic assays in the presence of poly(ethylene glycol)s with different hydrodynamic diameters suggested that pleurotolysin formed membrane pores with a functional diameter of 3.8-5 nm. Pleurotolysin-induced lysis of human erythrocytes was specifically inhibited by the addition of sphingomyelin-cholesterol liposomes to the extracellular space. Pleurotolysin A specifically bound to sphingomyelin-cholesterol liposomes and caused leakage of the internal carboxyfluorescein in concert with pleurotolysin B. Experiments including solubilization of pleurotolysin-treated erythrocytes with 2% (w/v) SDS at 25 degrees C and SDS-polyacrylamide gel electrophoresis/Western immunoblotting showed that pleurotolysin A and B bound to human erythrocytes in this sequence and assembled into an SDS-stable, 700-kDa complex. Ring-shaped structures with outer and inner diameters of 14 and 7 nm, respectively, were isolated from the solubilized erythrocyte membranes by a sucrose gradient centrifugation. Pleurotolysin A and B formed an SDS-stable, ring-shaped complex of the same dimensions on sphingomyelin-cholesterol liposomes as well.  相似文献   
960.
The qkI gene encodes an RNA binding protein which was identified as a candidate for the classical neurologic mutation, qkv. Although qkI is involved in glial cell differentiation in mice, qkI homologues in other species play important roles in various developmental processes. Here, we show a novel function of qkI in smooth muscle cell differentiation during embryonic blood vessel formation. qkI null embryos died between embryonic day 9.5 and 10.5. Embryonic day 9.5 qkI null embryos showed a lack of large vitelline vessels in the yolk sacs, kinky neural tubes, pericardial effusion, open neural tubes and incomplete embryonic turning. Using X-gal and immunohistochemical staining, qkI is first shown to be expressed in endothelial cells and smooth muscle cells. Analyses of qkI null embryos in vivo and in vitro revealed that the vitelline artery was too thin to connect properly to the yolk sac, thereby preventing remodeling of the yolk sac vasculature, and that the vitelline vessel was deficient in smooth muscle cells. Addition of QKI and platelet-endothelial cell adhesion molecule-1 positive cells to an in vitro para-aortic splanchnopleural culture of qkI null embryos rescued the vascular remodeling deficit. These data suggest that QKI protein has a critical regulatory role in smooth muscle cell development, and that smooth muscle cells play an important role in inducing vascular remodeling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号