首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2017篇
  免费   80篇
  国内免费   4篇
  2021年   11篇
  2020年   14篇
  2019年   20篇
  2018年   28篇
  2017年   32篇
  2016年   33篇
  2015年   51篇
  2014年   70篇
  2013年   142篇
  2012年   128篇
  2011年   132篇
  2010年   80篇
  2009年   80篇
  2008年   118篇
  2007年   140篇
  2006年   106篇
  2005年   138篇
  2004年   122篇
  2003年   119篇
  2002年   119篇
  2001年   47篇
  2000年   42篇
  1999年   38篇
  1998年   30篇
  1997年   14篇
  1996年   16篇
  1995年   17篇
  1994年   11篇
  1993年   15篇
  1992年   14篇
  1991年   15篇
  1990年   10篇
  1989年   18篇
  1988年   21篇
  1987年   19篇
  1986年   8篇
  1985年   4篇
  1984年   12篇
  1983年   13篇
  1982年   10篇
  1981年   5篇
  1980年   4篇
  1979年   6篇
  1978年   5篇
  1976年   2篇
  1975年   4篇
  1974年   6篇
  1971年   2篇
  1969年   2篇
  1964年   1篇
排序方式: 共有2101条查询结果,搜索用时 203 毫秒
81.
Sonic hedgehog (SHH) and its signaling have been identified in several human cancers, and increased levels of its expression appear to correlate with disease progression and metastasis. However, the role of SHH in bone destruction associated with oral squamous cell carcinomas is still unclear. In this study we analyzed SHH expression and the role played by SHH signaling in gingival carcinoma-induced jawbone destruction. From an analysis of surgically resected lower gingival squamous cell carcinoma mandible samples, we found that SHH was highly expressed in tumor cells that had invaded the bone matrix. On the other hand, the hedgehog receptor Patched and the signaling molecule Gli-2 were highly expressed in the osteoclasts and the progenitor cells. SHH stimulated osteoclast formation and pit formation in the presence of the receptor activator for nuclear factor-κB ligand (RANKL) in CD11b+ mouse bone marrow cells. SHH upregulated phosphorylation of ERK1/2 and p38 MAPK, NFATc1, tartrate-resistant acid phosphatase (TRAP), and Cathepsin K expression in RAW264.7 cells. Our results suggest that tumor-derived SHH stimulated the osteoclast formation and bone resorption in the tumor jawbone microenvironment.  相似文献   
82.
Transgenic mouse lines expressing a soluble form of human nectin-2 (hNectin-2Ig Tg) exhibited distinctive elevation of amylase and lipase levels in the sera. In this study, we aimed to clarify the histopathology and to propose the transgenic mouse lines as new animal model for characteristic pancreatic exocrine defects. The significant increase of amylase and lipase levels in sera of the transgenic lines approximately peaked at 8 weeks old and thereafter, plateaued or gradually decreased. The histopathology in transgenic acinar cells was characterized by intracytoplasmic accumulation of abnormal proteins with decrease of normal zymogen granules. The hNectin-2Ig expression was observed in the cytoplasm of pancreatic acinar cells, which was consistent with zymogen granules. However, signals of hNectin-2Ig were very weak in the transgenic acinar cells with the abnormal cytoplasmic accumulaion. The PCNA-positive cells increased in the transgenic pancreas, which suggested the affected acinar cells were regenerated. Acinar cells of hNectin-2Ig Tg had markedly small number of zymogen granules with remarkable dilation of the endoplasmic reticulum (ER) lumen containing abundant abnormal proteins. In conclusion, hNectin-2Ig Tg is proposed as a new animal model for characteristic pancreatic exocrine defects, which are due to the ER stress induced by expression of mutated cell adhesion molecule that is a soluble form of human nectin-2.  相似文献   
83.
Carbonylation, an oxidative modification of the amino group of arginine and lysine residues caused by reactive oxygen species, has emerged as a new type of oxidative damage. Protein carbonylation has been shown to exert adverse effects on various protein functions. Recently, the role of food components in the attenuation of oxidative stress has been the focus of many studies. Most of these studies focused on the chemical properties of food components. However, it is also important to determine their effects on protein functions via post-translational modifications. In this study, we developed a novel procedure for evaluating the antioxidant capacity of food components. Hydrogen peroxide (H2O2)-induced protein carbonylation in HL-60 cells was quantitatively analyzed by using fluorescent dyes (Cy5–hydrazide dye and IC3–OSu dye), followed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) and fluorescence determination. Among a panel of food components tested, quinic acid, kaempferol, saponin, squalene, trigonelline, and mangiferin were shown to be capable of suppressing protein carbonylation in HL-60 cells. Our results demonstrated that this fluorescence labeling/SDS–PAGE procedure allows for the detection of oxidative stress-induced protein carbonylation with high sensitivity and quantitative accuracy. This method should be useful for the screening of new antioxidant food components as well as the analysis of their suppression mechanism.  相似文献   
84.
Chemical optimization of the 5,6,7,8-tetrahydropyrido[4,3-d]pyrimidine (THPP) scaffold was conducted with a focus on cellular potency while maintaining high selectivity against PI3K isoforms. Compound 11f was identified as a potent, highly selective and orally available PI3Kδ inhibitor. In addition, 11f exhibited efficacy in an in vivo antibody production model. The desirable drug-like properties and in vivo efficacy of 11f suggest its potential as a drug candidate for the treatment of autoimmune diseases and leukocyte malignancies.  相似文献   
85.
In Mytilus mussels, paternal mitochondrial DNA (mtDNA) from sperm is known to be transmitted to offspring. This phenomenon is called doubly uniparental inheritance (DUI). Under DUI, sperm mtDNA (M type) is inherited only by males. Female mussels receive maternal mtDNA (F type). However, in our previous study, we showed female and unfertilized eggs have both F and M types. We hypothesized that the two M types both from sperm and unfertilized eggs were transmitted to offspring. To test the hypothesis, we examined the number of M type haplotypes in mature M. galloprovincialis. The M type in larvae was compared with those of the parents. Cross experiments were carried out to test the inheritance of M type. In six of 20 mature mussels, two M types were detected by sequence analysis and polymerase chain reaction-restriction fragment length polymorphism. In cross experiments of larval samples from five of 12 crosses, double peak wave was observed by single nucleotide polymorphisms analysis. In these larval samples, the higher peak wave was identical to the parental M type. Larvae received much more paternal M type than the maternal ones. We demonstrated that two M types from sperm and unfertilized eggs were transmitted to offspring in M. galloprovincialis.  相似文献   
86.
Obata K  Furuno T  Nakanishi M  Togari A 《FEBS letters》2007,581(30):5917-5922
Using an in vitro co-culture approach comprising cultured murine superior cervical ganglia and MC3T3-E1 osteoblast-like cells, we found that the addition of scorpion venom (SV) elicited neurite activation via intracellular Ca2+ mobilization and, after a lag period, osteoblastic Ca2+ mobilization. SV did not have any direct effect on the osteoblastic cells in the absence of neurites. The addition of an alpha1-adrenergic receptor (AR) antagonist, prazosin, dose-dependently prevented the osteoblastic activation that resulted as a consequence of neural activation by SV. These results demonstrate that osteoblastic activation occurred as a direct response to neuronal activation, which activation was mediated by alpha1-ARs in the osteoblastic cells.  相似文献   
87.
The human malaria parasite (Plasmodium falciparum) possesses a plastid-derived organelle called the apicoplast, which is believed to employ metabolisms crucial for the parasite's survival. We cloned and studied the biochemical properties of plant-type ferredoxin (Fd) and Fd-NADP+ reductase (FNR), a redox system that potentially supplies reducing power to Fd-dependent metabolic pathways in malaria parasite apicoplasts. The recombinant P. falciparum Fd and FNR proteins were produced by synthetic genes with altered codon usages preferred in Escherichia coli. The redox potential of the Fd was shown to be considerably more positive than those of leaf-type and root-type Fds from plants, which is favourable for a presumed direction of electron flow from catabolically generated NADPH to Fd in the apicoplast. The backbone structure of P. falciparum Fd, as solved by X-ray crystallography, closely resembles those of Fds from plants, and the surface-charge distribution shows several acidic regions in common with plant Fds and some basic regions unique to this Fd. P. falciparum FNR was able to transfer electrons selectively to P. falciparum Fd in a reconstituted system of NADPH-dependent cytochrome c reduction. These results indicate that an NADPH-FNR-Fd cascade is operative in the apicoplast of human malaria parasites.  相似文献   
88.
We cloned a new cysteine proteinase of wheat seed origin, which hydrolyzed the storage protein gliadin almost specifically, and was named gliadain. Gliadain mRNA was expressed 1 day after the start of seed imbibition, and showed a gradual increase thereafter. Gliadain expression was suppressed when uniconazol, a gibberellin synthesis inhibitor, was added to germinating seeds. Histochemical detection with anti-gliadain serum indicated that gliadain was present in the aleurone layer and also that its expression intensity increased in sites nearer the embryo. The enzymological characteristics of gliadain were investigated using recombinant glutathione S-transferase (GST)-progliadain fusion protein produced in Escherichia coli. The GST-progliadain almost specifically digested gliadin into low molecular mass peptides. These results indicate that gliadain is produced via gibberellin-mediated gene activation in aleurone cells and secreted into the endosperm to digest its storage proteins. Enzymologically, the GST-progliadain hydrolyzed benzyloxycarbonyl-Phe-Arg-7-amino-4-methylcoumarin (Z-Phe-Arg-NH(2)-Mec) at K(m) = 9.5 microm, which is equivalent to the K(m) value for hydrolysis of this substrate by cathepsin L. Hydrolysis was inhibited by two wheat cystatins, WC1 and WC4, with IC(50) values of 1.7 x 10(-8) and 5.0 x 10(-8) m, respectively. These values are comparable with those found for GST-progliadain inhibition by E-64 and egg-white cystatin, and are consistent with the possibility that, in germinating wheat seeds, gliadain is under the control of intrinsic cystatins.  相似文献   
89.
Although the Japanese eel Anguilla japonica is a commercially important species, its habitat use is not well understood during its life stages in the river. In this study, we investigated the longitudinal distribution and microhabitat use of young Japanese eels (<200 mm in total length [TL], which correspond to elver and early yellow stages) using 180 quadrates (1 m × 1 m) in six stations in a small river (approximately 11.5 km long, 3.0–25.0 m wide) that flows through paddy areas in Fukushima Prefecture, Japan. No differences were observed in the TL of eels among the sampling stations. The analysis using generalized linear models showed that eel density increased as number of weirs decreased. The analysis using generalized additive models showed that water depth, current velocity, and substrate complexity were important factors determining microhabitat use. Eels used shallow habitats (<35 cm) with slow currents (5–40 cm/s) and high complex riverbeds (>0.35 in index of substrate complexity). These findings provide useful information to conserve and manage wild eels inhabiting small rivers flowing through paddy areas.  相似文献   
90.

The phytotoxic effects of two allelochemicals (trans-cinnamic acid and syringaldehyde) at different concentrations (1000, 100, 10, and 1 µM) on seed germination, seedling growth, and physiological and biochemical changes of Echinochloa crus-galli L. were tested by comparison to a commercial herbicide ‘Nominee’ (that is, 100 g/L bispyribac-sodium). trans-Cinnamic acid and the herbicide inhibited seed germination completely at 100 µM, whereas for syringaldehyde, complete inhibition required 1000 µM. However, with 100 µM syringaldehyde, the seed germination of the test species was 53% of the control. Allelochemicals and the herbicide delayed seed germination and significantly affected the speed of germination index (S), speed of cumulative germination index (AS), and coefficient of germination rate (CRG). The roots were more affected when nutrients were not added to the growth bioassay. In general, with the increasing concentration of allelochemicals from 100 to 1000 µM, the inhibitory effects increased. Via microscopy analysis, we found leaf blade wilting and necrosis at concentrations above 100 µM in allelochemical-treated plants. Roots of E. crus-galli treated with 1000 µM allelochemicals had black points on root nodes but had no root hairs. The anatomy of roots treated with allelochemicals (1000 µM) showed contraction or reduction of root pith cells as well as fewer and larger vacuoles compared to the control. The allelochemicals also showed remarkable effects on seedling growth, SPAD index, chlorophyll content, and free proline content in a pot culture bioassay, indicating that trans-cinnamic acid and syringaldehyde are potent inhibitors of E. crus-galli growth and can be developed as herbicides for future weed management strategies.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号