首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   826篇
  免费   54篇
  2023年   4篇
  2022年   5篇
  2021年   9篇
  2020年   6篇
  2019年   6篇
  2018年   10篇
  2017年   14篇
  2016年   15篇
  2015年   25篇
  2014年   24篇
  2013年   30篇
  2012年   44篇
  2011年   45篇
  2010年   19篇
  2009年   29篇
  2008年   53篇
  2007年   46篇
  2006年   28篇
  2005年   47篇
  2004年   47篇
  2003年   33篇
  2002年   33篇
  2001年   31篇
  2000年   25篇
  1999年   26篇
  1998年   10篇
  1997年   7篇
  1996年   7篇
  1995年   7篇
  1994年   4篇
  1993年   6篇
  1992年   23篇
  1991年   14篇
  1990年   17篇
  1989年   25篇
  1988年   10篇
  1987年   8篇
  1986年   7篇
  1985年   13篇
  1984年   8篇
  1983年   6篇
  1981年   5篇
  1978年   4篇
  1974年   4篇
  1972年   5篇
  1971年   3篇
  1970年   4篇
  1969年   6篇
  1968年   4篇
  1967年   3篇
排序方式: 共有880条查询结果,搜索用时 15 毫秒
781.
A vibriophage, KVP241, and six of its relatives were isolated independently from seawater using Vibrio parahaemolyticus as the host. All of the phages had the same morphology (a hexagonal head and a tail with a contractile sheath) and the same host range (specific for some V. parahaemolyticus strains). DNA-DNA hybridization experiments elucidated that their genomes are highly homologous to each other. Analyses of amino acid sequences of putative major capsid proteins indicated that KVP241 may be weakly related to T4-type phages having a more elongated head.  相似文献   
782.
Connexins (Cxs) make up a family of gap junction structural proteins that form hexameric assemblies in the plasma membranes of adjacent cells that interact to form intercellular channels. It has been demonstrated that many kinds of CXs are differentially expressed in a variety of tissues; however, there have been only a few studies of CX expression in rat salivary glands. The co-localization of CX26 and 32 was examined in the parotid glands. Double immunofluorescence revealed that CX26 and 32 were present in the same gap junction. Double immuno-electron microscopy showed co-localization of both CX26 and 32 on the same gap junctional membranes between acinar cells. These results suggest that CX26 and 32 may participate in regulation of secretory function and permeability of acinar cells in the rat parotid glands.  相似文献   
783.
Recently, a polyethylene glycol (PEG)-modification method for liposomes prepared using pH-gradient method has been proposed. The differences in the pharmacokinetics and the impact on the antitumor effect were examined; however the impact of PEG-lipid molar weight has not been investigated yet. The main purpose of this study is to evaluate the impact of PEG-lipid molar weight against the differences in the pharmacokinetics, the drug-release profile, and the antitumor effect between the proposed PEG-modification method, called the post-modification method, and the conventional PEG-modification method, called the pre-modification method. Various comparative studies were performed using irinotecan as a general model drug. The results showed that PEG-lipid degradation could be markedly inhibited in the post-modification method. Furthermore, prolonged circulation time was observed in the post-modification method. The sustained drug-release was observed in the post-modification method by the results of the drug-releasing test in plasma. Moreover, a higher antitumor effect was observed in the post-modification method. It was also confirmed that the same behaviors were observed in all comparative studies even though the PEG molecular weight was lower. In conclusion, the post-modification method has the potential to be a valuable PEG-modification method that can achieve higher preservation stability of PEG-lipid, prolonged circulation time, and higher antitumor effect with only half the amount of PEG-lipid as compared to the pre-modification method. Furthermore, it was demonstrated that PEG(5000)-lipid would be more desirable than PEG(2000)-lipid since it requires much smaller amount of PEG-lipid to demonstrate the same performances.  相似文献   
784.

Background

Insulin receptor substrate (IRS)-1 is associated with tumorigenesis; its levels are elevated in several human cancers. IRS-1 protein binds to several oncogene proteins. Oxidative stress and reactive oxygen species (ROS) are involved in the initiation and progression of cancers. Cancer cells produce greater levels of ROS than normal cells do because of increased metabolic stresses. However, excessive production of ROS kills cancer cells. Autophagy usually serves as a survival mechanism in response to stress conditions, but excessive induction of autophagy results in cell death. In addition to inducing necrosis and apoptosis, ROS induces autophagic cell death. ROS inactivates IRS-1 mediated signaling and reduces intracellular IRS-1 concentrations. Thus, there is a complex relationship between IRS-1, ROS, autophagy, and cancer. It is not fully understood how cancer cells grow rapidly and survive in the presence of high ROS levels.

Methods and results

In this study, we established mouse NIH/3T3 cells that overexpressed IRS-1, so mimicking cancers with increased IRS-1 expression levels; we found that the IRS-1 overexpressing cells grow more rapidly than control cells do. Treatment of cells with glucose oxidase (GO) provided a continuous source of ROS; low dosages of GO promoted cell growth, while high doses induced cell death. Evidence for GO induced autophagy includes increased levels of isoform B-II microtubule-associated protein 1 light chain 3 (LC3), aggregation of green fluorescence protein-tagged LC3, and increased numbers of autophagic vacuoles in cells. Overexpression of IRS-1 resulted in inhibition of basal autophagy, and reduced oxidative stress-induced autophagy and cell death. ROS decreased the mammalian target of rapamycin (mTOR)/p70 ribosomal protein S6 kinase signaling, while overexpression of IRS-1 attenuated this inhibition. Knockdown of autophagy-related gene 5 inhibited basal autophagy and diminished oxidative stress-induced autophagy and cell death.

Conclusion

Our results suggest that overexpression of IRS-1 promotes cells growth, inhibits basal autophagy, reduces oxidative stress-induced autophagy, and diminishes oxidative stress-mediated autophagy-dependent cell death. ROS-mediated autophagy may occur via inhibition of IRS-1/phosphatidylinositol 3-kinase/mTOR signaling. Our data afford a plausible explanation for IRS-1 involvement in tumor initiation and progression.  相似文献   
785.
Osteosarcoma is the most frequent, nonhematopoietic, primary malignant tumor of bone. Histopathologically, osteosarcoma is characterized by complex mixtures of different cell types with bone formation. The role of environmental factors in the formation of such a complicated tissue structure as osteosarcoma remains to be elucidated. Here, a newly established murine osteosarcoma model was used to clarify the roles of environmental factors such as fibroblast growth factor-2 (Fgf2) or leukemia-inhibitory factor (Lif) in the maintenance of osteosarcoma cells in an immature state. These factors were highly expressed in tumor environmental stromal cells, rather than in osteosarcoma cells, and they potently suppressed osteogenic differentiation of osteosarcoma cells in vitro and in vivo. Further investigation revealed that the hyperactivation of extracellular signal-regulated kinase (Erk)1/2 induced by these factors affected in the process of osteosarcoma differentiation. In addition, Fgf2 enhanced both proliferation and migratory activity of osteosarcoma cells and modulated the sensitivity of cells to an anticancer drug. The results of the present study suggest that the histology of osteosarcoma tumors which consist of immature tumor cells and pathologic bone formations could be generated dependent on the distribution of such environmental factors. The combined blockade of the signaling pathways of several growth factors, including Fgf2, might be useful in controlling the aggressiveness of osteosarcoma.  相似文献   
786.
Mitochondria are dynamic organelles that change in response to extracellular stimuli. These changes are essential for normal mitochondrial/cellular function and are controlled by a tight balance between two antagonistic pathways that promote fusion and fission. Although some molecules have been identified to mediate the mitochondrial fusion and fission process, the underlying mechanisms remain unclear. Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a mitochondrial molecule that regulates a variety of mitochondrial functions. Here, we examined the role of TRAP1 in the regulation of morphology. Stable TRAP1 knockdown cells showed abnormal mitochondrial morphology, and we observed significant decreases in dynamin-related protein 1 (Drp1) and mitochondrial fission factor (Mff), mitochondrial fission proteins. Similar results were obtained by transient knockdown of TRAP1 in two different cell lines, SH-SY5Y neuroblastoma cells and KNS-42 glioma cells. However, TRAP1 knockdown did not affect expression levels of fusion proteins. The reduction in Drp1 and Mff protein levels was rescued following treatment with the proteasome inhibitor MG132. These results suggest that TRAP1 regulates the expression of fission proteins and controls mitochondrial fusion/fission, which affects mitochondrial/cellular function.  相似文献   
787.
788.
Musashi1 (MSI1) is an RNA-binding protein that plays critical roles in nervous-system development and stem-cell self-renewal. Here, we examined its role in the progression of glioma. Short hairpin RNA (shRNA)-based MSI1-knock down (KD) in glioblastoma and medulloblastoma cells resulted in a significantly lower number of self renewing colony on day 30 (a 65% reduction), compared with non-silencing shRNA-treated control cells, indicative of an inhibitory effect of MSI1-KD on tumor cell growth and survival. Immunocytochemical staining of the MSI1-KD glioblastoma cells indicated that they ectopically expressed metaphase markers. In addition, a 2.2-fold increase in the number of MSI1-KD cells in the G2/M phase was observed. Thus, MSI1-KD caused the prolongation of mitosis and reduced the cell survival, although the expression of activated Caspase-3 was unaltered. We further showed that MSI1-KD glioblastoma cells xenografted into the brains of NOD/SCID mice formed tumors that were 96.6% smaller, as measured by a bioluminescence imaging system (BLI), than non-KD cells, and the host survival was longer (49.3±6.1 days vs. 33.6±3.6 days; P<0.01). These findings and other cell biological analyses suggested that the reduction of MSI1 in glioma cells prolonged the cell cycle by inducing the accumulation of Cyclin B1. Furthermore, MSI1-KD reduced the activities of the Notch and PI(3) kinase-Akt signaling pathways, through the up-regulation of Numb and PTEN, respectively. Exposure of glioma cells to chemical inhibitors of these pathways reduced the number of spheres and living cells, as did MSI1-KD. These results suggest that MSI1 increases the growth and/or survival of certain types of glioma cells by promoting the activation of both Notch and PI(3) kinase/Akt signaling.  相似文献   
789.
Helicobacter pylori encodes a single iron-cofactored superoxide dismutase (SodB), which is regulated by the ferric uptake regulator (Fur). Ferrous ion (Fe(2+)) is necessary for the activation of SodB. The activity of SodB is an important determinant of the capability of H. pylori for long-term colonization of the stomach and of the development of metronidazole (Mtz) resistance of the bacterium. This study is conducted to characterize the Fe(2+)-supply mechanisms for the activation of SodB in H. pylori, which, as mentioned above, is associated with the host-colonization ability and Mtz resistance of H. pylori. In this study, we demonstrate that fecA1, a Fe(3+)-dicitrate transporter homolog, is an essential gene for SodB activation, but not for the biogenic activity of H. pylori. H. pylori with SodB inactivation by fecA1 deletion showed reduced resistance to H(2)O(2), reduced gastric mucosal-colonization ability in Mongolian gerbils, and also reduced resistance to Mtz. Our experiment demonstrated that FecA1 is an important determinant of the host-colonization ability and Mtz resistance of H. pylori through Fe(2+) supply to SodB, suggesting that FecA1 may be a possible target for the development of a novel bactericidal drug.  相似文献   
790.
Hepatocellular carcinoma (HCC) usually arises from hepatic fibrosis caused by chronic inflammation. In chronic liver damage, hepatic stellate cells undergo progressive activation to myofibroblasts (MFB), which are important extracellular-matrix-producing mesenchymal cells. Concomitantly, perturbation of transforming growth factor (TGF)-β signaling by pro-inflammatory cytokines in the epithelial cells of the liver (hepatocytes) promotes both fibrogenesis and carcinogenesis (fibro-carcinogenesis). Insights into fibro-carcinogenic effects on chronically damaged hepatocytes have come from recent detailed analyses of the TGF-β signaling process. Smad proteins, which convey signals from TGF-β receptors to the nucleus, have intermediate linker regions between conserved Mad homology (MH) 1 and MH2 domains. TGF-β type I receptor and pro-inflammatory cytokine-activated kinases differentially phosphorylate Smad2 and Smad3 to create phosphoisoforms phosphorylated at the COOH-terminal, linker, or both (L/C) regions. After acute liver injury, TGF-β-mediated pSmad3C signaling terminates hepatocytic proliferation induced by the pro-inflammatory cytokine-mediated mitogenic pSmad3L pathway; TGF-β and pro-inflammatory cytokines synergistically enhance collagen synthesis by activated hepatic stellate cells via pSmad2L/C and pSmad3L/C pathways. During chronic liver disease progression, pre-neoplastic hepatocytes persistently affected by TGF-β together with pro-inflammatory cytokines come to exhibit the same carcinogenic (mitogenic) pSmad3L and fibrogenic pSmad2L/C signaling as do MFB, thereby accelerating liver fibrosis while increasing risk of HCC. This review of Smad phosphoisoform-mediated signals examines similarities and differences between epithelial and mesenchymal cells in acute and chronic liver injuries and considers Smad linker phosphorylation as a potential target for the chemoprevention of fibro-carcinogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号