首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   71篇
  2021年   6篇
  2019年   4篇
  2016年   3篇
  2015年   6篇
  2014年   4篇
  2013年   4篇
  2012年   7篇
  2010年   9篇
  2008年   4篇
  2007年   5篇
  2005年   3篇
  2003年   6篇
  2002年   5篇
  2001年   6篇
  2000年   3篇
  1995年   4篇
  1994年   3篇
  1992年   6篇
  1990年   4篇
  1989年   7篇
  1988年   4篇
  1987年   5篇
  1986年   8篇
  1985年   10篇
  1984年   3篇
  1983年   7篇
  1982年   3篇
  1981年   7篇
  1980年   3篇
  1979年   5篇
  1978年   11篇
  1977年   4篇
  1976年   6篇
  1975年   5篇
  1974年   5篇
  1973年   8篇
  1972年   10篇
  1971年   5篇
  1970年   9篇
  1969年   6篇
  1967年   3篇
  1966年   6篇
  1965年   3篇
  1964年   3篇
  1962年   3篇
  1961年   3篇
  1960年   3篇
  1959年   2篇
  1957年   3篇
  1955年   2篇
排序方式: 共有278条查询结果,搜索用时 46 毫秒
91.
Subcellular organellles from livers of rats three days prenatal to 50 weeks postnatal were separated on sucrose gradients. The peroxisomes had a constant density of 1.243 g/ml throughout the life of the animal. The density of the mitochondria changed from about 1.236 g/ml at birth to a constant value of 1.200 g/ml after two weeks. The peroxisomal and mitochondrial fatty acid beta-oxidation and the peroxisomal and supernatant activities of catalase and glycerol-3-phosphate dehydrogenase were measured at each age, as well as the peroxisomal core enzyme, urate oxidase, and the mitochondrial matrix enzyme, glutamate dehydrogenase. All of these activities were very low or undetectable before birth. Mitochondrial glutamate dehydrogenase and peroxisomal urate oxidase reached maximal activities per g of liver at two and five weeks of age, respectively. Fatty acid beta-oxidation in both peroxisomes and mitochondria and peroxisomal glycerol-3-phosphate dehydrogenase exhibited maximum activities per g of liver between one and two weeks of age before weaning and then decreased to steady state levels in the adult. Peroxisomal beta-oxidation accounted for at least 10% of the total beta-oxidation activity in the young rat liver, but became 30% of the total in the liver of the adult female and 20% in the adult male due to a decrease in mitochondrial beta-oxidation after two weeks of age. The greatest change in beta-oxidation was in the mitochondrial fraction rather than in the peroxisomes. At two weeks of age, four times as much beta-oxidation activity was in the mitochondria as in the peroxisomal fraction. Peroxisomal glycerol-3-phosphate dehydrogenase activity accounted for 5% to 7% of the total activity in animals younger than one week, but only 1% to 2% in animals older than one week. Up to three weeks of age, 85% to 90% of the liver catalase was recovered in the peroxisomes. The activity of peroxisomal catalase per g of rat liver remained constant after three weeks of age, but the total activity of catalase further increased 2.5- to 3-fold, and all of the increased activity was in the supernatant fraction.  相似文献   
92.
NADH-Nitrate Reductase Inhibitor from Soybean Leaves   总被引:17,自引:15,他引:2       下载免费PDF全文
A NADH-nitrate reductase inhibitor has been isolated from young soybean (Glycine max L. Merr. Var. Amsoy) leaves that had been in the dark for 54 hours. The presence of the inhibitor was first suggested by the absence of nitrate reductase activity in the homogenate until the inhibitor was removed by diethylaminoethyl (DEAE)-cellulose chromatography. The inhibitor inactivated the enzyme in homogenates of leaves harvested in the light. Nitrate reductases in single whole cells isolated through a sucrose gradient were equally active from leaves grown in light or darkness, but were inhibited by addition of the active inhibitor.

The NADH-nitrate reductase inhibitor was purified 2,500-fold to an electrophoretic homogeneous protein by a procedure involving DEAE- cellulose chromatography, Sephadex G-100 filtration, and ammonium sulfate precipitation followed by dialysis. The assay was based on nitrate reductase inhibition. A rapid partial isolation procedure was also developed to separate nitrate reductase from the inhibitor by DEAE-cellulose chromatography and elution with KNO3. The inhibitor was a heat-labile protein of about 31,000 molecular weight with two identical subunits. After electrophoresis on polyacrylamide gel two adjacent bands of protein were present; an active form and an inactive form that developed on standing. The active factor inhibited leaf NADH-nitrate reductase but not NADPH-nitrate reductase, the bacterial nitrate reductase or other enzymes tested. The site of inhibition was probably at the reduced flavin adenine dinucleotide-NR reaction, since it did not block the partial reaction of NADH-cytochrome c reductase. The inhibitor did not appear to be a protease. Some form of association of the active inhibitor with nitrate reductase was indicated by a change of inhibitor mobility through Sephadex G-75 in the presence of the enzyme. The inhibition of nitrate reductase was noncompetitive with nitrate but caused a decrease in Vmax.

The isolated inhibitor was inactivated in the light, but after 24 hours in the dark full inhibitory activity returned. Equal amounts of inhibitor were present in leaves harvested from light or darkness, except that the inhibitor was at first inactive when rapidly isolated from leaves in light. Photoinactivation of yellow impure inhibitor required no additional components, but inactivation of the purified colorless inhibitor required the addition of flavin.

Preliminary evidence and a procedure are given for partial isolation of a component by DEAE-cellulose chromatography that stimulated nitrate reductase. The data suggest that light-dark changes in nitrate reductase activity are regulated by specific protein inhibitors and stimulators.

  相似文献   
93.
Enzymatic hydrolysis of phosphoglycolate proceeds through O-P bond cleavage as determined by reaction in H218O and analysis of the trimethylsilyl derivatives of the reaction products by mass spectrometry. No phosphate, hydroxyl, or carboxyl exchange occurred. End product inhibition was consistent with an ordered release of products, first the alcoholic product, glycolate, then phosphate. Analysis of the data indicated that the phosphate.enzyme complex dissociated very rapidly, and this was confirmed by use of alternative phosphomonoester substrates. Maximum velocity with these alternate substrates was found to be proportional to the pKa of of the corresponding alcoholic product, indicating the rate-limiting step in the reaction was protonation of the bridge oxygen. The use of substrate analogs further suggested that enzymatic specificity residues in exacting steric requirements for binding, and that large alkyl groups were excluded on this basis. Phosphoglycolate phosphatase catalyzed transphorylation to a wide range of acceptors and was inhibited at the active site by diisopropyl-fluorophosphate. The data suggest that the reaction sequence proceeds via a phosphoenzyme intermediate. N-Ethylmaleimide slowly inactivated the enzyme, the rate being greatly increased by P-glycolate, but not by magnesium or phosphate ions. The data suggest a conformational change is necessary to induce the transition state complex and phosphoenzyme formation. This may account for the phosphate acceptor specificity and is consistent with the failure to observe an enzyme-mediated H2O-phosphate oxygen exchange.  相似文献   
94.
Treatment of rabbit hemopexin with bromoacetic acid (BrAc) or with diethylpyrocarbonate (DEP) modified histidine residues and produced a concomitant decrease in the protein's ability to form a low-spin hemichrome complex with deuteroheme (ferrideuteroporphyrin IX). Deuteroheme bound to hemopexin before treatment decreased the extent of inactivation by either reagent. After exposure of deuteroheme-hemopexin to 0.16 m BrAc at pH 6.9 for 120 h, 10–11 of the 16 histidine residues of hemopexin were carboxymethylated, but 90–95% of the deuteroheme-hemopexin complex remained intact. Under the same conditions, 12 histidine residues of apo-hemopexin were carboxymethylated, and 95% of the protein's ability to form its normal hemichrome complex with heme (ferriprotoporphyrin IX) was abolished. The alkylated apo-protein, however, did retain a potential to interact with deuteroheme. The apparent dissociation constants for the complexes of metal-free deuteroporphyrin and deuteroheme with BrAc-treated apo-hemopexin were both about 10?6m and nearly equal to that of the native deuteroporphyrin-hemopexin complex, as assessed by quenching of tryptophan fluorescence.Approximately 10 histidyl residues of the deuteroheme-hemopexin complex, but only about 4 residues of the apo-protein, were modified by DEP before heme-binding was appreciably affected. The effects of DEP on hemopexin were reversed by hydroxylamine at neutral pH, indicating that ethoxyformylation of histidine residues caused the observed inactivation of hemopexin. This and the results of BrAc treatment suggest that hemopexin contains several easily accessible histidine residues which are not critical for its interaction with heme.The conformation-sensitive positive ellipticity at 231 nm of hemopexin was affected by carboxymethylation and ethoxyformylation. Treatment with BrAc had only a small effect on the intrinsic ellipticity of apo-hemopexin, but eliminated the increase in ellipticity produced by interaction of unmodified hemopexin with heme. Treatment with DEP, on the other hand, decreased both intrinsic and extrinsic ellipticity.These results provide further evidence that the heme-hemopexin complex involves histidyl-heme iron coordination. In addition, they show that formation of the histidyl-heme complex not only greatly enhances the strength of the heme-hemopexin interaction but also is important for triggering conformational changes in the protein.  相似文献   
95.
The hydrolysis of ascorbate-2-sulfate by the enzyme, ascorbate-2-sulfate sulfohydrolase, purified from bovine liver has been shown to be powerfully inhibited by ascorbate-2-phosphate. The inhibition by ascorbate phosphate is competitive with a KI of 0.3 μM. Na2HPO4 also inhibits by an apparent non-competitive process. The Na2HPO4 concentration at 50% inhibition is 7.7 μM. A possible control role for ascorbate phosphate in ascorbate biochemistry is suggested.  相似文献   
96.
Variables Affecting the CO(2) Compensation Point   总被引:5,自引:5,他引:0       下载免费PDF全文
Some factors influencing dark respiration, photorespiration, and photosynthesis were examined for their effect on the CO2 compensation point (70 μl/l) of detached soybean (Glycine max) leaf discs. A higher compensation point in young leaves decreased to the constant value after leaf expansion and maturation, but increased again during senescence. The compensation point was 40 to 50% higher in plants grown in the summer than in the winter. The compensation point and dark respiration increased with temperatures above 17 C. Below 17 C dark respiration continued to decrease, but the compensation point did not decrease further. Increasing light intensities did not affect the compensation point.  相似文献   
97.
Subcellular organelle fractionation of nitrogen-fixing nodules of soybean (Glycine max (L.) Merr.) indicates that a number of enzymes involved in the assimilation of ammonia into amino acids and purines are located in the proplastids. These include asparagine synthetase (EC 6.3.1.1), phosphoribosyl amidotransferase (EC 2.4.2.14), phosphoglycerate dehydrogenase (EC 1.1.1.95), serine hydroxymethylase (EC 2.1.2.1), and methylene-tetrahydrofolate dehydrogenase (EC 1.5.1.5). Of the two isoenzymes of asparate aminotransferase (EC 2.6.1.1) in the nodule, only one was located in the proplastid fraction. Both glutamate synthase (EC 1.4.1.14) and triosephosphate isomerase (EC 5.3.1.1) were associated at least in part with the proplastids. Glutamine synthetase (EC 6.3.1.2) and xanthine dehydrogenase (EC 1.2.1.37) were found in significant quantities only in the soluble fraction. Phosphoribosylpyrophosphate synthetase (EC 2.7.6.1) was found mostly in the soluble fraction, although small amounts of it were detected in other organelle fractions. These results together with recent organelle fractionation and electron microscopic studies form the basis for a model of the subcellular distribution of ammonium assimilation, amide synthesis and uredie biogenesis in the nodule.Abbreviations FH4 tetrahydrofolic acid - PRPP 5-phospho--D-ribose 1-pyrophosphate - PRPP synthetase ribosephosphate pyrophosphokinase (phosphoribosylpyrophosphate synthetase)  相似文献   
98.
Large-scale mammalian cell culture in the absence of antibiotics requires stringent conditions of sterility for all vessels, procedure, and systems used. Application of existing fermentation technology suffers from the differences between mammalian and bacterial cultures. Relatively simple and inexpensive 100-L vessels have been designed specifically for medium storage and antibiotic-free mammalian cell culture. These vessels are portable and sterilized in a 2 x 3 x 5 ft conventional or VACUMATIC autoclave. They consist of 30-gal 316 stainless-steel sanitary process drums whose heads have been modified to meet the rapid pressure changes that occur during autoclaving. The vessels incorporate systems for aseptic introduction and removal of both liquids and gases required for inoculation, growth, and harvesting of cell suspensions. A two-disk vibromixer is used for agitation with inoculation at a laminar flow hood and incubation in a warm room. These vessels have been used for culture of one rat and eight human tumor lines for over 2 x 10(5) L of suspension.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号