首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   366篇
  免费   40篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2017年   3篇
  2016年   5篇
  2015年   7篇
  2014年   15篇
  2013年   16篇
  2012年   22篇
  2011年   11篇
  2010年   9篇
  2009年   12篇
  2008年   22篇
  2007年   26篇
  2006年   19篇
  2005年   22篇
  2004年   19篇
  2003年   11篇
  2002年   12篇
  2001年   17篇
  2000年   30篇
  1999年   8篇
  1998年   4篇
  1997年   6篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   5篇
  1991年   6篇
  1990年   3篇
  1989年   9篇
  1988年   7篇
  1987年   2篇
  1986年   7篇
  1985年   4篇
  1984年   7篇
  1983年   4篇
  1982年   6篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1978年   4篇
  1977年   6篇
  1976年   8篇
  1975年   2篇
  1974年   3篇
  1969年   1篇
  1968年   1篇
排序方式: 共有406条查询结果,搜索用时 203 毫秒
81.
The bradykinin receptor antagonists [D-Phe7]bradykinin, D-Arg[Hyp3,D-Phe7]bradykinin and D-Arg[Hyp3,Thi5,8,D-Phe7]bradykinin were tested for their ability to serve as substrates for kininase II (angiotensin converting enzyme) purified from rabbit lung. By HPLC, the peptides were not measurably degraded over 30 minutes. Under identical conditions, bradykinin was completely degraded to bradykinin (1-7). When hippuryl-His-Leu was used as a substrate for kininase II, the D-Phe7-substituted bradykinins acted as weak noncompetitive inhibitors. While the peptides were poor substrates for kininase II, they were short-lived when injected intravenously. D-Arg[Hyp3,D-Phe7]bradykinin was completely degraded to small fragments in less than 2 minutes. In diluted serum in vitro, a single product was observed with elution consistent with loss of arginine, suggestive of metabolism by kininase I.  相似文献   
82.
The interactions of the water-soluble porphyrins M(TMpy-P4) [M = H2, Cu(II), Ni(II), and Co(III); TMpy-P4 = tetrakis(4-N-methylpyridyl)porphyrinato ion], with the hexadeoxyribonucleotides d(CGTACG)2, d(TACGTA)2, d(GCATGC)2, d(TGTGCA)2, and d(CTATAG)2 have been investigated by resonance Raman and/or UV-visible spectroscopy. The results indicate that all hexamers containing the 5'CG3' as well as the 5'GC3' site, and also the mismatched hexamer d(TGTGCA)2, are capable of intercalating the H2, Cu(II) and Ni(II) porphyrins. 1H nuclear magnetic resonance spectra of d(CGTACG)2 mixed with Cu(TMpy-P4) have provided further evidence for the intercalation. For the other cases, outside binding by localized electrostatic interaction is suggested. There is no evidence of groove binding to any of the hexamers. Possible reasons for different binding properties of long and short helices are discussed.  相似文献   
83.
84.
85.
Through a comparison of X-ray co-crystallographic data for 1 and 2 in the Chek1 active site, it was hypothesized that the affinity of the indolylquinolinone series (2) for Chek1 kinase would be improved via C6 substitution into the hydrophobic region I (HI) pocket. An efficient route to 6-bromo-3-indolyl-quinolinone (9) was developed, and this series was rapidly optimized for potency by modification at C6. A general trend was observed among these low nanomolar Chek1 inhibitors that compounds with multiple basic amines, or elevated polar surface area (PSA) exhibited poor cell potency. Minimization of these parameters (basic amines, PSA) resulted in Chek1 inhibitors with improved cell potency, and preliminary pharmacokinetic data are presented for several of these compounds.  相似文献   
86.
87.
Actin is a major component of the cytoskeleton that transmits mechanical stress in both muscle and nonmuscle cells. As the first step toward developing a “bio-nano strain gauge” that would be able to report the mechanical stress imposed on an actin filament, we quantitatively examined the fluorescence intensity of dyes attached to single actin filaments under various tensile forces (5-20 pN). Tensile force was applied via two optically trapped plastic beads covalently coated with chemically modified heavy meromyosin molecules that were attached to both end regions of an actin filament. As a result, we found that the fluorescence intensity of an actin filament, where 20% of monomers were labeled with tetramethylrhodamine (TMR)-5-maleimide at Cys374 and the filamentous structure was stabilized with nonfluorescent phalloidin, decreased by ∼6% per 10 pN of the applied force, whereas the fluorescence intensity of an actin filament labeled with either BODIPY TMR cadaverin-iodoacetamide at Cys374 or rhodamine-phalloidin showed only an ∼2% decrease per 10 pN of the applied force. On the other hand, spectroscopic measurements of actin solutions showed that the fluorescence intensity of TMR-actin increased 1.65-fold upon polymerization (G-F transformation), whereas that of BODIPY-actin increased only 1.06-fold. These results indicate that the external force distorts the filament structure, such that the microenvironment around Cys374 approaches that in G-actin. We thus conclude that the fluorescent dye incorporated into an appropriate site of actin can report the mechanical distortion of the binding site, which is a necessary condition for the bio-nano strain gauge.  相似文献   
88.
In this study, we show that the highly pathogenic H5N1 avian influenza virus (AIV) (A/crow/Kyoto/53/04 and A/chicken/Egypt/CL6/07) induced apoptosis in duck embryonic fibroblasts (DEF). In contrast, apoptosis was reduced among cells infected with low-pathogenic AIVs (A/duck/HK/342/78 [H5N2], A/duck/HK/820/80 [H5N3], A/wigeon/Osaka/1/01 [H7N7], and A/turkey/Wisconsin/1/66 [H9N2]). Thus, we investigated the molecular mechanisms of apoptosis induced by H5N1-AIV infection. Caspase-dependent and -independent pathways contributed to the cytopathic effects. We further showed that, in the induction of apoptosis, the hemagglutinin of H5N1-AIV played a major role and its cleavage sequence was not critical. We also observed outer membrane permeabilization and loss of the transmembrane potential of the mitochondria of infected DEF, indicating that mitochondrial dysfunction was caused by the H5N1-AIV infection. We then analyzed Ca2+ dynamics in the infected cells and demonstrated an increase in the concentration of Ca2+ in the cytosol ([Ca2+]i) and mitochondria ([Ca2+]m) after H5N1-AIV infection. Regardless, gene expression important for regulating Ca2+ efflux from the endoplasmic reticulum did not significantly change after H5N1-AIV infection. These results suggest that extracellular Ca2+ may enter H5N1-AIV-infected cells. Indeed, EGTA, which chelates extracellular free Ca2+, significantly reduced the [Ca2+]i, [Ca2+]m, and apoptosis induced by H5N1-AIV infection. In conclusion, we identified a novel mechanism for influenza A virus-mediated cell death, which involved the acceleration of extracellular Ca2+ influx, leading to mitochondrial dysfunction and apoptosis. These findings may be useful for understanding the pathogenesis of H5N1-AIV in avian species as well as the impact of Ca2+ homeostasis on influenza A virus infection.Avian influenza viruses (AIVs) are classified as highly or low-pathogenic AIVs (HPAIVs or LPAIVs, respectively) based on their pathogenicity in chickens (1). HPAIVs cause systemic infections and high mortality in chickens (28), whereas poultry are asymptomatic or develop mild respiratory problems and/or intestinal illness after LPAIV infection (49). Hemagglutinin (HA) cleavability is a critical determinant of AIV pathogenicity in avian species (61). Other determinants, such as nonstructural (NS) protein and neuraminidase (NA) protein, reportedly regulate the virulence of AIVs (9, 29, 44). However, waterfowl, known as the natural host for AIVs, do not usually have any symptoms during an HPAIV infection (21), whereas they show neurologic symptoms and death after infection with some of the recently emerged HPAIVs, such as the Asian H5N1 virus (11, 46, 62). Thus, the entire mechanism responsible for the pathogenicity of the AIVs is not yet known. Unknown cellular and viral factors probably underlie the pathogenesis of HPAIVs in avian species, especially waterfowl.The alveolar epithelial cells (66) or vascular endothelial cells (32) of human patients and chickens infected by H5N1-AIV show apoptosis. Other reports suggest that apoptosis of these cells is essential for the development of acute lung injury in mice and acute respiratory distress syndrome in humans (39), which is often observed in H5N1-AIV-infected patients. Therefore, it is necessary to evaluate whether apoptosis is critical for the pathogenesis of H5N1-AIV in vivo and to understand the molecular mechanisms of the apoptotic cell death induced by H5N1-AIV infection.Ca2+ is a key regulator of cell survival, and the breakdown of Ca2+ homeostasis, due to sustained elevations in Ca2+ inside cells, triggers programmed cell death involving apoptosis (24). Indeed, disruption of Ca2+ homeostasis plays a key role in apoptosis during the pathogenic process of several types of viral infections, including those with human immunodeficiency virus (HIV), hepatitis C virus, and human T-cell leukemia virus type 1 (3, 4, 31, 57). In addition, the HIV gp120 envelope protein induces neuronal cell death through Ca2+ dysregulation, even in the absence of viral particles (25).In this study, we used duck embryonic fibroblasts (DEF) to elucidate the molecular mechanisms of the apoptotic cell death induced by H5N1-AIV. We show here that H5N1-AIV infection triggered extracellular Ca2+ influx and that this alteration in the concentration of Ca2+ inside the cells subsequently induced mitochondrial dysfunction and led to apoptotic cell death. In addition, we demonstrate that H5N1-HA was a critical viral factor for inducing apoptosis.  相似文献   
89.
The evaluation of the removal efficacy during manufacturing is important for the risk assessment of plasma products with respect to possible contamination by infectious prions, as recently reported in several papers on the potential for prion transmission through plasma products. Here, we evaluated a virus removal filter which has 15 nm pores. An antithrombin sample immediately prior to nano-filtration was spiked with prion material prepared in two different ways. The removal (log reduction factor) of prion infectivity using animal bioassays was ≥4.72 and 4.00 in two independent filtrations. However, infectivity was detected in both the pellet and supernatant following ultracentrifugation of the 15 nm filtered samples, indicating difficulty in complete removal. The data supports the conclusion that a certain amount of infectious prion protein is present as a smaller and/or soluble form (less than ~15 nm in diameter).  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号