首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3981篇
  免费   373篇
  国内免费   3篇
  2023年   27篇
  2022年   12篇
  2021年   131篇
  2020年   79篇
  2019年   92篇
  2018年   115篇
  2017年   106篇
  2016年   170篇
  2015年   309篇
  2014年   275篇
  2013年   270篇
  2012年   444篇
  2011年   359篇
  2010年   230篇
  2009年   186篇
  2008年   267篇
  2007年   240篇
  2006年   196篇
  2005年   189篇
  2004年   132篇
  2003年   129篇
  2002年   107篇
  2001年   17篇
  2000年   17篇
  1999年   12篇
  1998年   27篇
  1997年   9篇
  1996年   8篇
  1995年   12篇
  1994年   9篇
  1993年   11篇
  1992年   16篇
  1991年   13篇
  1990年   9篇
  1988年   12篇
  1987年   5篇
  1985年   5篇
  1984年   13篇
  1983年   7篇
  1982年   6篇
  1981年   9篇
  1980年   4篇
  1979年   8篇
  1978年   4篇
  1976年   4篇
  1975年   8篇
  1974年   4篇
  1972年   4篇
  1969年   4篇
  1968年   4篇
排序方式: 共有4357条查询结果,搜索用时 15 毫秒
991.
The quest to discover the variety of ecological niches inhabited by Saccharomyces cerevisiae has led to research in areas as diverse as wineries, oak trees and insect guts. The discovery of fungal communities in the human gastrointestinal tract suggested the host's gut as a potential reservoir for yeast adaptation. Here, we report the existence of yeast populations associated with the human gut (HG) that differ from those isolated from other human body sites. Phylogenetic analysis on 12 microsatellite loci and 1715 combined CDSs from whole-genome sequencing revealed three subclusters of HG strains with further evidence of clonal colonization within the host's gut. The presence of such subclusters was supported by other genomic features, such as copy number variation, absence/introgressions of CDSs and relative polymorphism frequency. Functional analysis of CDSs specific of the different subclusters suggested possible alterations in cell wall composition and sporulation features. The phenotypic analysis combined with immunological profiling of these strains further showed that sporulation was related with strain-specific genomic characteristics in the immune recognition pattern. We conclude that both genetic and environmental factors involved in cell wall remodelling and sporulation are the main drivers of adaptation in S. cerevisiae populations in the human gut.  相似文献   
992.
In macroscopic dynamic models of fermentation processes, elementary modes (EM) derived from metabolic networks are often used to describe the reaction stoichiometry in a simplified manner and to build predictive models by parameterizing kinetic rate equations for the EM. In this procedure, the selection of a set of EM is a key step which is followed by an estimation of their reaction rates and of the associated confidence bounds. In this paper, we present a method for the computation of reaction rates of cellular reactions and EM as well as an algorithm for the selection of EM for process modeling. The method is based on the dynamic metabolic flux analysis (DMFA) proposed by Leighty and Antoniewicz (2011, Metab Eng, 13(6), 745–755) with additional constraints, regularization and analysis of uncertainty. Instead of using estimated uptake or secretion rates, concentration measurements are used directly to avoid an amplification of measurement errors by numerical differentiation. It is shown that the regularized DMFA for EM method is significantly more robust against measurement noise than methods using estimated rates. The confidence intervals for the estimated reaction rates are obtained by bootstrapping. For the selection of a set of EM for a given st oichiometric model, the DMFA for EM method is combined with a multiobjective genetic algorithm. The method is applied to real data from a CHO fed-batch process. From measurements of six fed-batch experiments, 10 EM were identified as the smallest subset of EM based upon which the data can be described sufficiently accurately by a dynamic model. The estimated EM reaction rates and their confidence intervals at different process conditions provide useful information for the kinetic modeling and subsequent process optimization.  相似文献   
993.
994.
The cell wall is a crucial structural feature in the vast majority of bacteria and comprises a covalently closed network of peptidoglycan (PG) strands. While PG synthesis is important for survival under many conditions, the cell wall is also a dynamic structure, undergoing degradation and remodeling by ‘autolysins’, enzymes that break down PG. Cell division, for example, requires extensive PG remodeling, especially during separation of daughter cells, which depends heavily upon the activity of amidases. However, in Vibrio cholerae, we demonstrate that amidase activity alone is insufficient for daughter cell separation and that lytic transglycosylases RlpA and MltC both contribute to this process. MltC and RlpA both localize to the septum and are functionally redundant under normal laboratory conditions; however, only RlpA can support normal cell separation in low‐salt media. The division‐specific activity of lytic transglycosylases has implications for the local structure of septal PG, suggesting that there may be glycan bridges between daughter cells that cannot be resolved by amidases. We propose that lytic transglycosylases at the septum cleave PG strands that are crosslinked beyond the reach of the highly regulated activity of the amidase and clear PG debris that may block the completion of outer membrane invagination.  相似文献   
995.
996.
The theory of facultative calibration, which explains personality differences as responses to variation in other phenotypic traits of individuals, received mixed results throughout the last years. Whereas there is strong evidence that individual differences in human behavior are correlated with the self-perception of other traits, it still needs to be questioned whether they are also adjusted to objective differences in body condition (i.e. formidability). In two independent studies (N1?=?119 men and 124 women, N2?=?165 men) we tested hypotheses of facultative personality calibration in an integrative way, assessing various outcomes of previous studies in the same samples (including Anger Proneness, Extraversion, Neuroticism, Narcissism, Shyness, Vengefulness, and Sociosexual Orientation). Formidability was derived from assessments of physical strength and various anthropometric measures from full-body 3D scans and paired with measures of self-perceived and other-rated physical attractiveness (based on rotating morphometric 3D body models and facial photographs). We could replicate positive correlations with self-perceived attractiveness across outcomes, though these were not corroborated by more objective assessments of attractiveness: an effect of other-rated attractiveness was clearly not supported in our results for either sex, regardless of the personality outcome. Anthropometric measures and physical strength were also largely unrelated to personality, with the exception of Extraversion, Utility of Personal Aggression, and Sociosexual Orientation. While the two samples differed in their results for domain-level Extraversion, at least the Extraversion facets Activity and Assertiveness were related to strength and masculinity in men. For Sociosexual Orientation the results of our two samples varied more substantially, a positive association was only present in Study 2. Future studies need to clarify whether formidability, potentially an indicator of genetic quality for males, enhances their orientation and success in short-term mating. Furthermore we propose longitudinal twin-difference studies as means to evaluate the theory of personality recalibration in a more controlled manner.  相似文献   
997.
Improved methods are needed for in situ characterization of post-translational modifications in cell lines and tissues. For example, it is desirable to monitor the phosphorylation status of individual receptor tyrosine kinases in samples from human tumors treated with inhibitors to evaluate therapeutic responses. Unfortunately the leading methods for observing the dynamics of tissue post-translational modifications in situ, immunohistochemistry and immunofluorescence, exhibit limited sensitivity and selectivity. Proximity ligation assay is a novel method that offers improved selectivity through the requirement of dual recognition and increased sensitivity by including DNA amplification as a component of detection of the target molecule. Here we therefore established a generalized in situ proximity ligation assay to investigate phosphorylation of platelet-derived growth factor receptor beta (PDGFRbeta) in cells stimulated with platelet-derived growth factor BB. Antibodies specific for immunoglobulins from different species, modified by attachment of DNA strands, were used as secondary proximity probes together with a pair of primary antibodies from the corresponding species. Dual recognition of receptors and phosphorylated sites by the primary antibodies in combination with the secondary proximity probes was used to generate circular DNA strands; this was followed by signal amplification by replicating the DNA circles via rolling circle amplification. We detected tyrosine phosphorylated PDGFRbeta in human embryonic kidney cells stably overexpressing human influenza hemagglutinin-tagged human PDGFRbeta in porcine aortic endothelial cells transfected with the beta-receptor, but not in cells transfected with the alpha-receptor, and also in immortalized human foreskin fibroblasts, BJ hTert, endogenously expressing the PDGFRbeta. We furthermore visualized tyrosine phosphorylated PDGFRbeta in tissue sections from fresh frozen human scar tissue undergoing wound healing. The method should be of great value to study signal transduction, screen for effects of pharmacological agents, and enhance the diagnostic potential in histopathology.  相似文献   
998.
999.
Speakers in this symposium presented examples of respiratoryregulation that broadly illustrate principles of evolution fromwhole organ to genes. The swim bladder and lungs of aquaticand terrestrial organisms arose independently from a commonprimordial "respiratory pharynx" but not from each other. Pathwaysof lung evolution are similar between crocodiles and birds buta low compliance of mammalian lung may have driven the developmentof the diaphragm to permit lung inflation during inspiration.To meet the high oxygen demands of flight, bird lungs have evolvedseparate gas exchange and pump components to achieve unidirectionalventilation and minimize dead space. The process of "screening"(removal of oxygen from inspired air prior to entering the terminalunits) reduces effective alveolar oxygen tension and potentiallyexplains why nonathletic large mammals possess greater pulmonarydiffusing capacities than required by their oxygen consumption.The "primitive" central admixture of oxygenated and deoxygenatedblood in the incompletely divided reptilian heart is actuallyco-regulated with other autonomic cardiopulmonary responsesto provide flexible control of arterial oxygen tension independentof ventilation as well as a unique mechanism for adjusting metabolicrate. Some of the most ancient oxygen-sensing molecules, i.e.,hypoxia-inducible factor-1alpha and erythropoietin, are up-regulatedduring mammalian lung development and growth under apparentlynormoxic conditions, suggesting functional evolution. Normalalveolarization requires pleiotropic growth factors acting viahighly conserved cell–cell signal transduction, e.g.,parathyroid hormone-related protein transducing at least partlythrough the Wingless/int pathway. The latter regulates morphogenesisfrom nematode to mammal. If there is commonality among thesediverse respiratory processes, it is that all levels of organization,from molecular signaling to structure to function, co-evolveprogressively, and optimize an existing gas-exchange framework.  相似文献   
1000.
Energy homeostasis is a fundamental property of animal life, providing a genetically fixed balance between fat storage and mobilization. The importance of body fat regulation is emphasized by dysfunctions resulting in obesity and lipodystrophy in humans. Packaging of storage fat in intracellular lipid droplets, and the various molecules and mechanisms guiding storage-fat mobilization, are conserved between mammals and insects. We generated a Drosophila mutant lacking the receptor (AKHR) of the adipokinetic hormone signaling pathway, an insect lipolytic pathway related to ß-adrenergic signaling in mammals. Combined genetic, physiological, and biochemical analyses provide in vivo evidence that AKHR is as important for chronic accumulation and acute mobilization of storage fat as is the Brummer lipase, the homolog of mammalian adipose triglyceride lipase (ATGL). Simultaneous loss of Brummer and AKHR causes extreme obesity and blocks acute storage-fat mobilization in flies. Our data demonstrate that storage-fat mobilization in the fly is coordinated by two lipocatabolic systems, which are essential to adjust normal body fat content and ensure lifelong fat-storage homeostasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号