首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   13篇
  2023年   6篇
  2022年   3篇
  2021年   5篇
  2020年   3篇
  2019年   5篇
  2018年   5篇
  2017年   8篇
  2016年   4篇
  2015年   13篇
  2014年   18篇
  2013年   16篇
  2012年   26篇
  2011年   21篇
  2010年   12篇
  2009年   16篇
  2008年   17篇
  2007年   20篇
  2006年   6篇
  2005年   8篇
  2004年   11篇
  2003年   5篇
  2002年   5篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1990年   1篇
  1975年   1篇
  1973年   2篇
  1969年   1篇
  1968年   1篇
  1962年   1篇
排序方式: 共有246条查询结果,搜索用时 171 毫秒
51.
Two distinct dihydrolipoamide dehydrogenases (E3s, EC 1.8.1.4) have been detected in pea (Pisum sativum L. cv. Little Marvel) leaf extracts and purified to at or near homogeneity. The major enzyme, a homodimer with an apparent subunit Mr value 56 000 (80–90% of overall activity), corresponded to the mitochondrial isoform studied previously, as confirmed by electrospray mass spectrometry and N-terminal sequence analysis. The minor activity (10–20%), which also behaved as a homodimer, copurified with chloroplasts, and displayed a lower subunit Mr value of 52 000 which was close to the Mr value of 52 614±9.89 Da determined by electrospray mass spectrometry. The plastidic enzyme was also present at low levels in root extracts where it represented only 1–2% of total E3 activity. The specific activity of the chloroplast enzyme was three-to fourfold lower than its mitochondrial counterpart. In addition, it displayed a markedly higher affinity for NAD+ and was more sensitive to product inhibition by NADH. It exhibited no activity with NADP+ as cofactor nor was it inhibited by the presence of high concentrations of NADP+ or NADPH. Antibodies to the mitochondrial enzyme displayed little or no cross-reactivity with its plastidic counterpart and available amino acid sequence data were also suggestive of only limited sequence similarity between the two enzymes. In view of the dual location of the pyruvate dehydrogenase multienzyme complex (PDC) in plant mitochondria and chloroplasts, it is likely that the distinct chloroplastic E3 is an integral component of plastidic PDC, thus representing the first component of this complex to be isolated and characterised to date.Abbreviations E1 pyruvate dehydrogenase - E2 dihydrolipoamide acetyltransferase - E3 dihydrolipoamide dehydrogenase - PDC pyruvate dehydrogenase complex - OGDC 2-oxoglutarate dehydrogenase complex - GDC glycine decarboxylase complex - SDS-PAGE sodium dodecyl sulphate/polyacrylamide gel electrophoresis - TDP thiamine diphosphate - Mr relative molecular mass J.G.L. is grateful to the Biotechnology and Biological Sciences Research Council (BBSRC), U.K. for continuing financial support. M.C. is the holder of a BBSRC-funded earmarked Ph.D. studentship.  相似文献   
52.
Chemotaxis is an essential mechanism that enables bacteria to move toward favorable ecological niches. Escherichia coli, the historical model organism for studying chemotaxis, has five well‐studied chemoreceptors. However, many bacteria with different lifestyle have more chemoreceptors, most of unknown function. Using a high throughput screening approach, we identified a chemoreceptor from Pseudomonas putida KT2440, named McpH, which specifically recognizes purine and its derivatives, adenine, guanine, xanthine, hypoxanthine and uric acid. The latter five compounds form part of the purine degradation pathway, permitting their use as sole nitrogen sources. Isothermal titration calorimetry studies show that these six compounds bind McpH‐Ligand Binding Domain (LBD) with very similar affinity. In contrast, non‐metabolizable purine derivatives (caffeine, theophylline, theobromine), nucleotides, nucleosides or pyrimidines are unable to bind McpH‐LBD. Mutation of mcpH abolished chemotaxis toward the McpH ligands identified – a phenotype that is restored by complementation. This is the first report on bacterial chemotaxis to purine derivatives and McpH the first chemoreceptor described that responds exclusively to intermediates of a catabolic pathway, illustrating a clear link between metabolism and chemotaxis. The evolution of McpH may reflect a saprophytic lifestyle, which would have exposed the studied bacterium to high concentrations of purines produced by nucleic acid degradation.  相似文献   
53.
54.
Currently, autologous chondrocyte transplantation (ACT) is used to treat traumatic cartilage damage or osteochondrosis dissecans, but not degenerative arthritis. Since substantial refinements in the isolation, expansion and transplantation of chondrocytes have been made in recent years, the treatment of early stage osteoarthritic lesions using ACT might now be feasible. In this study, we determined the gene expression patterns of osteoarthritic (OA) chondrocytes ex vivo after primary culture and subculture and compared these with healthy chondrocytes ex vivo and with articular chondrocytes expanded for treatment of patients by ACT. Gene expression profiles were determined using quantitative RT-PCR for type I, II and X collagen, aggrecan, IL-1β and activin-like kinase-1. Furthermore, we tested the capability of osteoarthritic chondrocytes to generate hyaline-like cartilage by implanting chondrocyte-seeded collagen scaffolds into immunodeficient (SCID) mice. OA chondrocytes ex vivo showed highly elevated levels of IL-1β mRNA, but type I and II collagen levels were comparable to those of healthy chondrocytes. After primary culture, IL-1β levels decreased to baseline levels, while the type II and type I collagen mRNA levels matched those found in chondrocytes used for ACT. OA chondrocytes generated type II collagen and proteoglycan-rich cartilage transplants in SCID mice. We conclude that after expansion under suitable conditions, the cartilage of OA patients contains cells that are not significantly different from those from healthy donors prepared for ACT. OA chondrocytes are also capable of producing a cartilage-like tissue in the in vivo SCID mouse model. Thus, such chondrocytes seem to fulfil the prerequisites for use in ACT treatment.  相似文献   
55.
The reason for the existence of complex sensor kinases is little understood but thought to lie in the capacity to respond to multiple signals. The complex, seven‐domain sensor kinase TodS controls in concert with the TodT response regulator the expression of the toluene dioxygenase pathway in Pseudomonas putida F1 and DOT‐T1E. We have previously shown that some aromatic hydrocarbons stimulate TodS activity whereas others behave as antagonists. We show here that TodS responds in addition to the oxidative agent menadione. Menadione but no other oxidative agent tested inhibited TodS activity in vitro and reduced PtodX expression in vivo. The menadione signal is incorporated by a cysteine‐dependent mechanism. The mutation of the sole conserved cysteine of TodS (C320) rendered the protein insensitive to menadione. We evaluated the mutual opposing effects of toluene and menadione on TodS autophosphorylation. In the presence of toluene, menadione reduced TodS activity whereas toluene did not stimulate activity in the presence of menadione. It was shown by others that menadione increases expression of glucose metabolism genes. The opposing effects of menadione on glucose and toluene metabolism may be partially responsible for the interwoven regulation of both catabolic pathways. This work provides mechanistic detail on how complex sensor kinases integrate different types of signal molecules.  相似文献   
56.
Bacteria have been found in all niches explored on Earth, their ubiquity derives from their enormous metabolic diversity and their capacity to adapt to changes in the environment. Some bacterial strains are able to thrive in the presence of high concentrations of toxic organic chemicals, such as aromatic compounds, aliphatic alcohols and solvents. The extrusion of these toxic compounds from the cell to the external medium represents the most relevant aspect in the solvent tolerance of bacteria, however, solvent tolerance is a multifactorial process that involves a wide range of genetic and physiological changes to overcome solvent damage. These additional elements include reduced membrane permeabilization, implementation of a stress response programme, and in some cases degradation of the toxic compound. We discuss the recent advances in our understanding of the mechanisms involved in solvent tolerance.  相似文献   
57.
58.
The RND family transporter TtgABC and its cognate repressor TtgR from Pseudomonas putida DOT-T1E were both shown to possess multidrug recognition properties. Structurally unrelated molecules such as chloramphenicol, butyl paraben, 1,3-dihydroxynaphthalene, and several flavonoids are substrates of TtgABC and activate pump expression by binding to the TtgR-operator complex. Isothermal titration calorimetry was employed to determine the thermodynamic parameters for the binding of these molecules to TtgR. Dissociation constants were in the range from 1 to 150 microm, the binding stoichiometry was one effector molecule per dimer of TtgR, and the process was driven by favorable enthalpy changes. Although TtgR exhibits a large multidrug binding profile, the plant-derived compounds phloretin and quercetin were shown to bind with the highest affinity (K(D) of around 1 microm), in contrast to other effectors (chloramphenicol and aromatic solvents) for which exhibited a more reduced affinity. Structure-function studies of effectors indicate that the presence of aromatic rings as well as hydroxyl groups are determinants for TtgR binding. The binding of TtgR to its operator DNA does not alter the protein effector profile nor the effector binding stoichiometry. Moreover, we demonstrate here for the first time that the binding of a single effector molecule to the DNA-bound TtgR homodimer induces the dissociation of the repressor-operator complex. This provides important insight into the molecular mechanism of effector-mediated derepression.  相似文献   
59.
60.
A cell culture of Picea abies (L.) Karst. was used for studies of H2O2 generation during constitutive extracellular lignin formation and after elicitation by cell wall fragments of a pathogenic fungus, Heterobasidium parviporum. Stable, micromolar levels of H2O2 were present in the culture medium during lignin formation. Elicitation induced a burst of H2O2, peaking at ca. 90 min after elicitation. Of exogenous reducing substrates that may be responsible for the synthesis of H2O2 from O2, NADH stimulated H2O2 production irrespective of elicitation. Cysteine (Cys) and glutathione (GSH) partially scavenged the constitutive H2O2, but usually increased or prolonged elicitor-induced H2O2 formation. Culture medium peroxidases were not able to generate H2O2 in vitro with Cys or GSH as reductants. These thiols, however, generated H2O2 non-enzymically at pH 4.5. [35S]Sulphate feeding to spruce cells showed that endogenous sulphur-containing compounds (including GSH, GSSG and cysteic acid) existed in the culture medium. The apoplastic levels of these were, however, undetectable by the monobromobimane method suggesting that their contribution to apoplastic H2O2 formation is probably minor. Azide, an inhibitor of haem-containing enzymes, slightly inhibited constitutive H2O2 generation but strongly delayed the elicitor-induced H2O2 accumulation. Diphenylene iodonium, an inhibitor of flavin-containing enzymes, efficiently inhibited H2O2 production irrespective of elicitation. Elicitation led to downregulation of the expression of several peroxidase genes, and peroxidase activity in the culture medium was slightly reduced. Expression of three other peroxidase genes and a respiratory burst oxidase homologue (rboh) gene were upregulated. These data suggest that both peroxidases and rboh may contribute to H2O2 generation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号