首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   3篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2018年   1篇
  2016年   5篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   5篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1991年   2篇
  1990年   1篇
排序方式: 共有46条查询结果,搜索用时 656 毫秒
31.
Mountain vegetation is strongly affected by temperature and is expected to shift upwards with climate change. Dynamic vegetation models are often used to assess the impact of climate on vegetation and model output can be compared with paleobotanical data as a reality check. Recent paleoecological studies have revealed regional variation in the upward shift of timberlines in the Northern and Central European Alps in response to rapid warming at the Younger Dryas/Preboreal transition ca. 11 700 years ago, probably caused by a climatic gradient across the Alps. This contrasts with previous studies that successfully simulated the early Holocene afforestation in the (warmer) Central Alps with a chironomid‐inferred temperature reconstruction from the (colder) Northern Alps. We use LandClim , a dynamic landscape vegetation model to simulate mountain forests under different temperature, soil and precipitation scenarios around Iffigsee (2065 m a.s.l.) a lake in the Northwestern Swiss Alps, and compare the model output with the paleobotanical records. The model clearly overestimates the upward shift of timberline in a climate scenario that applies chironomid‐inferred July‐temperature anomalies to all months. However, forest establishment at 9800 cal. BP at Iffigsee is successfully simulated with lower moisture availability and monthly temperatures corrected for stronger seasonality during the early Holocene. The model‐data comparison reveals a contraction in the realized niche of Abies alba due to the prominent role of anthropogenic disturbance after ca. 5000 cal. BP, which has important implications for species distribution models (SDMs) that rely on equilibrium with climate and niche stability. Under future climate projections, LandClim indicates a rapid upward shift of mountain vegetation belts by ca. 500 m and treeline positions of ca. 2500 m a.s.l. by the end of this century. Resulting biodiversity losses in the alpine vegetation belt might be mitigated with low‐impact pastoralism to preserve species‐rich alpine meadows.  相似文献   
32.

Background

Current reporting guidelines do not call for standardised declaration of follow-up completeness, although study validity depends on the representativeness of measured outcomes. The Follow-Up Index (FUI) describes follow-up completeness at a given study end date as ratio between the investigated and the potential follow-up period. The association between FUI and the accuracy of survival-estimates was investigated.

Methods

FUI and Kaplan-Meier estimates were calculated twice for 1207 consecutive patients undergoing aortic repair during an 11-year period: in a scenario A the population’s clinical routine follow-up data (available from a prospective registry) was analysed conventionally. For the control scenario B, an independent survey was completed at the predefined study end. To determine the relation between FUI and the accuracy of study findings, discrepancies between scenarios regarding FUI, follow-up duration and cumulative survival-estimates were evaluated using multivariate analyses.

Results

Scenario A noted 89 deaths (7.4%) during a mean considered follow-up of 30±28months. Scenario B, although analysing the same study period, detected 304 deaths (25.2%, P<0.001) as it scrutinized the complete follow-up period (49±32months). FUI (0.57±0.35 versus 1.00±0, P<0.001) and cumulative survival estimates (78.7% versus 50.7%, P<0.001) differed significantly between scenarios, suggesting that incomplete follow-up information led to underestimation of mortality. Degree of follow-up completeness (i.e. FUI-quartiles and FUI-intervals) correlated directly with accuracy of study findings: underestimation of long-term mortality increased almost linearly by 30% with every 0.1 drop in FUI (adjusted HR 1.30; 95%-CI 1.24;1.36, P<0.001).

Conclusion

Follow-up completeness is a pre-requisite for reliable outcome assessment and should be declared systematically. FUI represents a simple measure suited as reporting standard. Evidence lacking such information must be challenged as potentially flawed by selection bias.  相似文献   
33.
To reconstruct the vegetation and fire history of the Upper Engadine, two continuous sediment cores from Lej da Champfèr and Lej da San Murezzan (Upper Engadine Valley, southeastern Switzerland) were analysed for pollen, plant macrofossils, charcoal and kerogen. The chronologies of the cores are based on 38 radiocarbon dates. Pollen and macrofossil data suggest a rapid afforestation with Betula, Pinus sylvestris, Pinus cembra, and Larix decidua after the retreat of the glaciers from the lake catchments 11,000 cal years ago. This vegetation type persisted until ca. 7300 cal b.p. (5350 b.c.) when Picea replaced Pinus cembra. Pollen indicative of human impact suggests that in this high-mountain region of the central Alps strong anthropogenic activities began during the Early Bronze Age (3900 cal b.p., 1950 b.c.). Local human settlements led to vegetational changes, promoting the expansion of Larix decidua and Alnus viridis. In the case of Larix, continuing land use and especially grazing after fire led to the formation of Larix meadows. The expansion of Alnus viridis was directly induced by fire, as evidenced by time-series analysis. Subsequently, the process of forest conversion into open landscapes continued for millennia and reached its maximum at the end of the Middle Ages at around 500 cal b.p. (a.d. 1450).  相似文献   
34.
35.
Cretaceous titanosaur nesting sites are currently known only from Europe, Asia and South America. In the latter, only the Auca Mahuevo and Sanagasta nesting sites have been confidently assigned to this clade of sauropod dinosaurs. Here we report the discovery of the first eggs and egg clutches found at Tama, a new Upper Cretaceous fossiliferous locality in the Los Llanos Formation, Sierra de Los Llanos (La Rioja, NW Argentina). At least five egg clutches, several partially preserved, isolated eggs and many eggshell fragments were discovered in a single outcrop of a sandstone horizon which represents a cumulative palaeosol profile. Although the mechanical and digital preparation of eggs did not reveal any embryonic remains in ovo, the morphology of the eggs and eggshells closely matches that of titanosaur eggs and eggshells found worldwide. The morphology and spatial grouping of the titanosaur eggs from Tama, along with geological observations support a burrow‐nesting strategy for these dinosaurs. Although the Sanagasta and Tama eggs were found in the same stratigraphical unit and share several morphological characters, they clearly differ in shell thickness and egg size. This, coupled with the interpretation of different sedimentary contexts for these nesting sites, strongly suggests that at least two different titanosaur species nested in La Rioja during the Late Cretaceous, using different nesting strategies. The occurrence of this new titanosaur nesting site in a semiarid palaeoenvironment represents an interesting case study for the reproductive biology of the titanosaur dinosaurs, particularly their labile nesting behaviour.  相似文献   
36.
Information on how species distributions and ecosystem services are impacted by anthropogenic climate change is important for adaptation planning. Palaeo data suggest that Abies alba formed forests under significantly warmer‐than‐present conditions in Europe and might be a native substitute for widespread drought‐sensitive temperate and boreal tree species such as beech (Fagus sylvatica) and spruce (Picea abies) under future global warming conditions. Here, we combine pollen and macrofossil data, modern observations, and results from transient simulations with the LPX‐Bern dynamic global vegetation model to assess past and future distributions of A. alba in Europe. LPX‐Bern is forced with climate anomalies from a run over the past 21 000 years with the Community Earth System Model, modern climatology, and with 21st‐century multimodel ensemble results for the high‐emission RCP8.5 and the stringent mitigation RCP2.6 pathway. The simulated distribution for present climate encompasses the modern range of A. alba, with the model exceeding the present distribution in north‐western and southern Europe. Mid‐Holocene pollen data and model results agree for southern Europe, suggesting that at present, human impacts suppress the distribution in southern Europe. Pollen and model results both show range expansion starting during the Bølling–Allerød warm period, interrupted by the Younger Dryas cold, and resuming during the Holocene. The distribution of A. alba expands to the north‐east in all future scenarios, whereas the potential (currently unrealized) range would be substantially reduced in southern Europe under RCP8.5. A. alba maintains its current range in central Europe despite competition by other thermophilous tree species. Our combined palaeoecological and model evidence suggest that A. alba may ensure important ecosystem services including stand and slope stability, infrastructure protection, and carbon sequestration under significantly warmer‐than‐present conditions in central Europe.  相似文献   
37.
38.
Vegetation History and Archaeobotany - National parks are supposed to protect large-scale ecological processes, along with species and ecosystems. Detailed knowledge about past vegetation and...  相似文献   
39.
Kaltenrieder P., Tinner W. and Ammann B. 2005. Long-term vegetation history at timberline in the Swiss Alps (Alpe d’Essertse, VS). Bot. Helv. 115: 137–154. Palaeoecological studies in the “Alpe d’Essertse” area have provided much information about vegetation changes and timberline fluctuations during the Holocene. In this study we repeated previous biostratigraphic investigations using plant macrofossils to improve their temporal and taxonomic resolution and to test their reliability. By analyzing 0.5-cm layers of a lake sediment we reached a temporal resolution of 44 years, and we were able to reconstruct vegetation changes in the surrounding area at species level. The sedimentary record analyzed extends from the Late-Glacial to the late Holocene. Alpine grasslands (12’000–11’000 cal. BP) were afforested by Larix decidua, Juniperus nana, and Pinus cembra (11,000–9’600 cal. B.P.). Stable subalpine larch-stone pine-forests (9’600–4’900 cal. BP) were followed by shrublands and meadows as a consequence of the climatically and anthropogenically induced destruction of forest vegetation (4’900–2’600 cal. BP). Changes in the abundance of P. cembra and L. decidua needles as well as changes of the other taxa were consistent with those found in previous studies from the same lake. Our results demonstrate that plant-macrofossil records can be reproduced spatially and temporally on separate cores with independent 14C chronologies.
Manuskript angenommen am 24. Juli 2005  相似文献   
40.
Aim Forest communities in the European Central Alps are highly sensitive to climatic change. Palaeobotanical studies have demonstrated that forests rapidly expanded upslope during Holocene warm intervals and contracted when temperatures fell. However, temperature alone cannot account for important changes in tree species abundance. For example, population expansion by Norway spruce (Picea abies), a dominant subalpine species, lagged suitable temperatures by about 3000 years in eastern and by 6000 years in western Switzerland. We hypothesize that spruce expansion was delayed by limited water availability in weakly developed soils and/or by drier‐than‐present climatic conditions. Location We examine the impact of reduced moisture availability on forest dynamics using a combined dynamic modelling/palaeoecological approach at two high‐elevational lakes in the Swiss Central Alps. Methods We simulate Holocene vegetation dynamics with the LandClim model in landscapes surrounding the two lakes and validate the model output by comparison with palaeobotanical reconstructions from the same sites. We evaluate the impact of shallow soils on vegetation dynamics at these sites by varying soil water‐holding capacity (i.e. bucket size) and precipitation abundance in model scenarios. Results Simulations with modern soil conditions and precipitation abundance matched reconstructed vegetation dynamics near the tree line, where temperature limits plant growth, but simulated abundant spruce during the entire Holocene. Spruce was absent only in simulations with a maximum bucket size of less than 7 cm, or when precipitation was reduced by at least 60%. In exploratory simulations of future conditions with average temperatures raised by 4 °C, the low water‐holding capacity of shallow alpine soils, not temperature, determined the upper elevational limit of spruce. Main conclusions Spruce expanded in the Central Alps only after soils developed sufficient water‐holding capacity and precipitation neared its modern abundance. Soil development will probably constrain the future response of tree species to warmer conditions (e.g. upslope migrations), as it did in the past.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号