首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   8篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   9篇
  2013年   8篇
  2012年   18篇
  2011年   5篇
  2010年   9篇
  2009年   2篇
  2008年   6篇
  2007年   3篇
  2006年   3篇
  2005年   5篇
  2004年   9篇
  2003年   6篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1996年   1篇
  1994年   3篇
  1990年   2篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1980年   3篇
  1978年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1956年   1篇
排序方式: 共有126条查询结果,搜索用时 359 毫秒
11.
Reactive cardiac fibrosis resulting from chronic pressure overload (PO) compromises ventricular function and contributes to congestive heart failure. We explored whether nonreceptor tyrosine kinases (NTKs) play a key role in fibrosis by activating cardiac fibroblasts (CFb), and could potentially serve as a target to reduce PO-induced cardiac fibrosis. Our studies were carried out in PO mouse myocardium induced by transverse aortic constriction (TAC). Administration of a tyrosine kinase inhibitor, dasatinib, via an intraperitoneally implanted mini-osmotic pump at 0.44 mg/kg/day reduced PO-induced accumulation of extracellular matrix (ECM) proteins and improved left ventricular geometry and function. Furthermore, dasatinib treatment inhibited NTK activation (primarily Pyk2 and Fak) and reduced the level of FSP1 positive cells in the PO myocardium. In vitro studies using cultured mouse CFb showed that dasatinib treatment at 50 nM reduced: (i) extracellular accumulation of both collagen and fibronectin, (ii) both basal and PDGF-stimulated activation of Pyk2, (iii) nuclear accumulation of Ki67, SKP2 and histone-H2B and (iv) PDGF-stimulated CFb proliferation and migration. However, dasatinib did not affect cardiomyocyte morphologies in either the ventricular tissue after in vivo administration or in isolated cells after in vitro treatment. Mass spectrometric quantification of dasatinib in cultured cells indicated that the uptake of dasatinib by CFb was greater that that taken up by cardiomyocytes. Dasatinib treatment primarily suppressed PDGF but not insulin-stimulated signaling (Erk versus Akt activation) in both CFb and cardiomyocytes. These data indicate that dasatinib treatment at lower doses than that used in chemotherapy has the capacity to reduce hypertrophy-associated fibrosis and improve ventricular function.  相似文献   
12.
This article reports simple, green and efficient synthesis of γ-Fe2O3 nanoparticles (NPs) (maghemite) through single-source precursor approach for colorimetric estimation of human glucose level. The γ-Fe2O3 NPs, having cubic morphology with an average particle size of 30 nm, exhibited effective peroxidase-like activity through the catalytic oxidation of peroxidase substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2 producing a blue-colored solution. On the basis of this colored-reaction, we have developed a simple, cheap, highly sensitive and selective colorimetric method for estimation of glucose using γ-Fe2O3/TMB/glucose–glucose oxidase (GOx) system in the linear range from 1 to 80 μM with detection limit of 0.21 μM. The proposed glucose sensor displays faster response, good stability, reproducibility and anti-interference ability. Based on this simple reaction process, human blood and urine glucose level can be monitored conveniently.  相似文献   
13.
This article recapitulates the scientific advancement towards the greener synthesis of silver nanoparticles. Applications of noble metals have increased throughout human civilization, and the uses for nano-sized particles are even more remarkable. “Green” nanoparticle synthesis has been achieved using environmentally acceptable solvent systems and eco-friendly reducing and capping agents. Numerous microorganisms and plant extracts have been applied to synthesize inorganic nanostructures either intracellularly or extracellularly. The use of nanoparticles derived from noble metals has spread to many areas including jewelery, medical fields, electronics, water treatment and sport utilities, thus improving the longevity and comfort in human life. The application of nanoparticles as delivery vehicles for bactericidal agents represents a new paradigm in the design of antibacterial therapeutics. Orientation, size and physical properties of nanoparticles influences the performance and reproducibility of a potential device, thus making the synthesis and assembly of shape- and size-controlled nanocrystals an essential component for any practical application. This need has motivated researchers to explore different synthesis protocols.  相似文献   
14.
In this paper we consider networks of evolutionary processors with splicing rules and permitting context (NEPPS) as language generating and computational devices. Such a network consists of several processors placed on the nodes of a virtual graph and are able to perform splicing (which is a biologically motivated operation) on the words present in that node, according to the splicing rules present there. Before applying the splicing operation on words, we check for the presence of certain symbols (permitting context) in the strings on which the rule is applied. Each node is associated with an input and output filter. When the filters are based on random context conditions, one gets the computational power of Turing machines with networks of size two. We also show how these networks can be used to solve NP-complete problems in linear time.  相似文献   
15.

Background

We have previously shown that ADP-induced TXA2 generation requires signaling from αIIbβ3 integrin in platelets. Here we observed that, unlike ADP, protease-activated receptor (PAR)-mediated TXA2 generation occurs independently of αIIbβ3. PAR agonists, but not ADP, activate G12/13 signaling pathways. Hence, we evaluated the role of these pathways in TXA2 generation.

Principal Findings

Inhibition of ADP-induced thromboxane generation by fibrinogen receptor antagonist SC57101 was rescued by co-stimulation of G12/13 pathways with YFLLRNP. This observation suggested an existence of a common signaling effector downstream of integrins and G12/13 pathways. Hence, we evaluated role of three potential tyrosine kinases; c-Src, Syk and FAK (Focal Adhesion Kinase) that are known to be activated by integrins. c-Src and Syk kinase did not play a role in ADP-induced functional responses in platelets. Selective activation of G12/13 pathways resulted in the activation of FAK, in the absence of integrin signaling. Interestingly, αIIbβ3-mediated FAK activation occurred in a Src family kinase (SFK)-independent manner whereas G12/13 pathway caused FAK activation in a SFK and RhoA-dependent manner. A FAK selective inhibitor TAE-226, blocked TXA2 generation. However, in comparison to WT mice, Pf4-Cre/Fak-Floxed mice did not show any difference in platelet TXA2 generation.

Conclusions

Therefore, we conclude that differential activation of FAK occurs downstream of Integrins and G12/13 pathways. However, the common effector molecule, possibly a tyrosine kinase downstream of integrins and G12/13 pathways contributing to TXA2 generation in platelets remains elusive.  相似文献   
16.
Eosinophils constitutively produce and store matrix metalloproteinase-9 (MMP-9), a protease implicated in tissue remodeling observed in asthma. In this study, we examined the rapid release of stored MMP-9 from eosinophils following stimulation with either tumor necrosis factor-alpha (TNF-alpha or the bacterial product fMLP. TNF-alpha induced rapid and robust pro-MMP-9 release from eosinophils. MMP-9 could be detected in the cell-free supernatant as early as 15min after stimulation. Rapid MMP-9 release was similarly induced by fMLP. TNF-alpha stimulation activated the mitogen-activated protein (MAP) kinases p38 MAP kinase and extracellular signal-regulated kinase-2 (Erk-2) at times and concentrations similar to that observed for MMP-9 release. Using pharmacological inhibitors, we found that TNF-alpha-stimulated MMP-9 release was mediated by p38 MAP kinase, but not Erk-1/2. Signaling through p38 MAP kinase may represent a universal mechanism for MMP-9 release from eosinophils, as fMLP-induced MMP-9 release was also regulated by p38 MAP kinase.  相似文献   
17.
Successful micropropagation protocol of a difficult-to-root bamboo species, Dendrocalamus giganteus (10–15 years old) along with the analysis of anatomical and biochemical changes during in vitro rhizogenesis was accomplished. Proliferated axillary shoots from nodal segments of 10–15 years old field culms exhibited shoot necrosis during multiple shoot formation phase and was controlled by subculturing in modified MS liquid medium having 825 mg l?1 NH4NO3, 3800 mg l?1 KNO3, 740 mg l?1 MgSO4 and 9% coconut water, 26.64 μM 6-benzylaminopurine (BA) and 0.46 μM kinetin. These multiple shoots proliferated from field grown culms, failed to root and hence callus was induced on MS solid medium containing 4.44 μM BA, 4.52 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 5.37 μM naphthalene acetic acid (NAA). Organogenesis from the callus was achieved upon transfer to MS medium with 11.10 μM BA and 2.32 pM kinetin. The callus-derived shoots multiplied on modified MS medium were rooted the best (91%) by culturing 3 days on MS medium having glucose (0.5%), sucrose (2.5%) and 98.41 μM indolebutyric acid (IBA) and subsequently to IBA-free MS medium containing 3% sucrose. Studies on peroxidase and IAA oxidase activity and endogenous free- and bound-IAA content showed that IAA oxidase and peroxidase oxidize endogenous IAA resulting in root initials formation. Anatomical studies confirmed the root primordia formation from 3rd day of IBA treatment and primordia were visible over the surface on 8th to 10th day. However, the shoot necrosis symptoms which started on 6th day of treatment intensified by 10th day leading to the death of the whole shoot system by 12th–15th day. Nevertheless, on the root formation medium with 9.84 μM IBA, new shoot buds were emerged and showed shoot growth in 60% of the rooted cultures, which were successfully acclimatized in shade-house with 100% survival. The present study establishes rooting of callus-derived shoots as the best way for the successful propagation of the difficult-to-root bamboo, D. giganteus when compared to axillary bud proliferated shoots.  相似文献   
18.
Pulicat Lake sediments are often severely polluted with the toxic heavy metal mercury. Several mercury-resistant strains of Bacillus species were isolated from the sediments and all the isolates exhibited broad spectrum resistance (resistance to both organic and inorganic mercuric compounds). Plasmid curing assay showed that all the isolated Bacillus strains carry chromosomally borne mercury resistance. Polymerase chain reaction and southern hybridization analyses using merA and merB3 gene primers/probes showed that five of the isolated Bacillus strains carry sequences similar to known merA and merB3 genes. Results of multiple sequence alignment revealed 99% similarity with merA and merB3 of TnMERI1 (class II transposons). Other mercury resistant Bacillus species lacking homology to these genes were not able to volatilize mercuric chloride, indicating the presence of other modes of resistance to mercuric compounds.  相似文献   
19.
Kattedan is an industrial area near Hyderabad, Andhra Pradesh, India, contaminated with high concentrations of metals attributed to industrial sources (battery manufacturing, metal plating, textile and pharmaceuticals production and others). Twelve different locations in the Kattedan industrial area were assessed for concentrations of metals (Zn, Cr, Cu, Ni, Co, Pb, Hg, Cd, and As) in soils, waters, and vegetation. Application of sequential extraction technique for the soils revealed relatively high percentages of Zn, Cu, and Cr associated with mobile fractions, and correspondingly high concentrations of Zn, Cr, Cu, and Pb in forage grass samples and a high degree of bioavailability to humans. Human exposure assessment revealed high concentrations of Pb, Zn, and Cr in blood and urine samples from the residents of the study area showing a direct pathway and a potential for toxicological hazard due to heavy metal pollution.  相似文献   
20.
The present study was conducted to determine the culturable bacterial profile from Kestopur canal (Kolkata, India) and analyze their heavy metal tolerance. In addition to daily sewage including solid and soluble wastes, a considerable load of toxic metals are released into this water body from industries, tanneries and agriculture, household as well as health sectors. Screening out microbes from such an environment was done keeping in mind their multifunctional application especially for bioremediation. Heavy metals are major environmental pollutants when present in high concentration in soil and show potential toxic effects on growth and development in plants and animals. Some edible herbs growing in the canal vicinity, and consumed by people, were found to harbour these heavy metals at sub-toxic levels. The bioconcentration factor of these plants being <1 indicates that they probably only absorb but not accumulate heavy metals. All the thirteen Grampositive bacteria isolated from these plants rhizosphere were found to tolerate high concentration of heavy metals like Co, Ni, Pb, Cr, Fe. Phylogenetic analysis of their 16S rDNA genes revealed that they belonged to one main taxonomic group — the Firmicutes. Seven of them were found to be novel with 92–95% sequence homology with known bacterial strains. Further microbiological analyses show that the alkaliphilic Bacillus weihenstephanensis strain IA1 and Exiguobacterium aestuarii strain CE1, with selective antibiotic sensitivity along with high Ni2+ and Cr6+ removal capabilities, respectively, can be prospective candidates for bioremediation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号