首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   239篇
  免费   17篇
  2022年   2篇
  2021年   10篇
  2019年   5篇
  2018年   4篇
  2017年   11篇
  2016年   5篇
  2015年   9篇
  2014年   12篇
  2013年   9篇
  2012年   19篇
  2011年   21篇
  2010年   16篇
  2009年   16篇
  2008年   15篇
  2007年   18篇
  2006年   19篇
  2005年   8篇
  2004年   11篇
  2003年   8篇
  2002年   7篇
  2001年   4篇
  2000年   6篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
排序方式: 共有256条查询结果,搜索用时 265 毫秒
81.

Background

The photorespiratory nitrogen cycle in C3 plants involves an extensive diversion of carbon and nitrogen away from the direct pathways of assimilation. The liberated ammonia is re-assimilated, but up to 25% of the carbon may be released into the atmosphere as CO2. Because of the loss of CO2 and high energy costs, there has been considerable interest in attempts to decrease the flux through the cycle in C3 plants. Transgenic tobacco plants were generated that contained the genes gcl and hyi from E. coli encoding glyoxylate carboligase (EC 4.1.1.47) and hydroxypyruvate isomerase (EC 5.3.1.22) respectively, targeted to the peroxisomes. It was presumed that the two enzymes could work together and compete with the aminotransferases that convert glyoxylate to glycine, thus avoiding ammonia production in the photorespiratory nitrogen cycle.

Results

When grown in ambient air, but not in elevated CO2, the transgenic tobacco lines had a distinctive phenotype of necrotic lesions on the leaves. Three of the six lines chosen for a detailed study contained single copies of the gcl gene, two contained single copies of both the gcl and hyi genes and one line contained multiple copies of both gcl and hyi genes. The gcl protein was detected in the five transgenic lines containing single copies of the gcl gene but hyi protein was not detected in any of the transgenic lines. The content of soluble amino acids including glycine and serine, was generally increased in the transgenic lines growing in air, when compared to the wild type. The content of soluble sugars, glucose, fructose and sucrose in the shoot was decreased in transgenic lines growing in air, consistent with decreased carbon assimilation.

Conclusions

Tobacco plants have been generated that produce bacterial glyoxylate carboligase but not hydroxypyruvate isomerase. The transgenic plants exhibit a stress response when exposed to air, suggesting that some glyoxylate is diverted away from conversion to glycine in a deleterious short-circuit of the photorespiratory nitrogen cycle. This diversion in metabolism gave rise to increased concentrations of amino acids, in particular glutamine and asparagine in the leaves and a decrease of soluble sugars.  相似文献   
82.

Background

School surveys provide an operational approach to assess malaria transmission through parasite prevalence. There is limited evidence on the comparability of prevalence estimates obtained from school and community surveys carried out at the same locality.

Methods

Concurrent school and community cross-sectional surveys were conducted in 46 school/community clusters in the western Kenyan highlands and households of school children were geolocated. Malaria was assessed by rapid diagnostic test (RDT) and combined seroprevalence of antibodies to bloodstage Plasmodium falciparum antigens.

Results

RDT prevalence in school and community populations was 25.7% (95% CI: 24.4-26.8) and 15.5% (95% CI: 14.4-16.7), respectively. Seroprevalence in the school and community populations was 51.9% (95% CI: 50.5-53.3) and 51.5% (95% CI: 49.5-52.9), respectively. RDT prevalence in schools could differentiate between low (<7%, 95% CI: 0-19%) and high (>39%, 95% CI: 25-49%) transmission areas in the community and, after a simple adjustment, were concordant with the community estimates.

Conclusions

Estimates of malaria prevalence from school surveys were consistently higher than those from community surveys and were strongly correlated. School-based estimates can be used as a reliable indicator of malaria transmission intensity in the wider community and may provide a basis for identifying priority areas for malaria control.  相似文献   
83.
Phosphatidic acid (PA) is an essential phospholipid involved in membrane biosynthesis and signal transduction in all eukaryotes. This review focuses on its role as lipid second messenger during plant stress, metabolism, and development. The contribution of different individual isoforms of enzymes that generate and break down PA will be discussed and the downstream responses highlighted, with particular focus on proteins that bind PA. Through characterization of several of these PA targets, a molecular and genetic basis for PA's role in plant stress and development is emerging.  相似文献   
84.
85.
86.
Aluminum (Al3+) has been recognized as a main toxic factor in crop production in acid lands. Phosphatidic acid (PA) is emerging as an important lipid signaling molecule and has been implicated in various stress-signaling pathways in plants. In this paper, we focus on how PA generation is affected by Al3+ using Coffea arabica suspension cells. We pre-labeled cells with [32P]orthophosphate (32Pi) and assayed for 32P-PA formation in response to Al3+. Treating cells for 15 min with either AlCl3 or Al(NO3)3 inhibited the formation of PA. In order to test how Al3+ affected PA signaling, we used the peptide mastoparan-7 (mas-7), which is known as a very potent stimulator of PA formation. The Al3+ inhibited mas-7 induction of PA response, both before and after Al3+ incubation. The PA involved in signaling is generated by two distinct phospholipid signaling pathways, via phospholipase D (PLD; EC: 3.1.4.4) or via Phospholipase C (PLC; EC: 3.1.4.3), and diacylglycerol kinase (DGK; EC 2.7.1.107). By labeling with 32Pi for short periods of time, we found that PA formation was inhibited almost 30% when the cells were incubated with AlCl3 suggesting the involvement of the PLC/DGK pathway. Incubation of cells with PLC inhibitor, U73122, affected PA formation, like AlCl3 did. PLD in vivo activation by mas-7 was reduced by Al3+. These results suggest that PA formation was prevented through the inhibition of the PLC activity, and it provides the first evidence for the role of Al toxicity on PA production.  相似文献   
87.
Phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] is an important lipid in membrane trafficking in animal and yeast systems; however, its role is still largely obscure in plants. Here, we demonstrate that the phosphatidylinositol 3-phosphate 5-kinase, formation of aploid and binucleate cells1 (FAB1)/FYVE finger-containing phosphoinositide kinase (PIKfyve), and its product, PtdIns(3,5)P2, are essential for the maturation process of endosomes to mediate cortical microtubule association of endosomes, thereby controlling proper PIN-FORMED protein trafficking in young cortical and stele cells of root. We found that FAB1 predominantly localizes on the Sorting Nexin1 (SNX1)-residing late endosomes, and a loss of FAB1 function causes the release of late endosomal proteins, Ara7, and SNX1 from the endosome membrane, indicating that FAB1, or its product PtdIns(3,5)P2, mediates the maturation process of the late endosomes. We also found that loss of FAB1 function causes the release of endosomes from cortical microtubules and disturbs proper cortical microtubule organization.Phosphoinositides play an important role in various cellular processes, including determination of organelle identity and mediating signal transduction by recruiting effector molecules to various organelles (Balla, 2013). Among those, D3-phosphorylated phosphoinositides, phosphatidylinositol 3-phosphate (PtdIns3P) and phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2], play essential roles in the endosomal trafficking and the vacuolar sorting. PtdIns3P is produced from phosphatidylinositol by class III PI3-kinase, vacuolar protein sorting34 (VPS34). In animal cells, PtdIns3P predominantly localizes to the early endosomes and controls endosome maturation, recycling, and degradation of cargo proteins coordinated with Rab5 GTPases (Jean and Kiger, 2012). In Arabidopsis (Arabidopsis thaliana), PtdIns3P mainly resides on the late endosomes and the prevacuolar membrane (Vermeer et al., 2006; Simon et al., 2014). Dysfunction of AtVPS34 resulted in a defect in growth (Welters et al., 1994), root hair elongation (Lee et al., 2008a), and pollen development (Lee et al., 2008b), indicating an important role for AtVPS34 and its product PtdIns3P in plant development. VPS34-mediated PtdIns3P synthesis at the endosomes recruits phosphatidylinositol 3-phosphate 5-kinase formation of aploid and binucleate cells1 (FAB1)/FYVE finger-containing phosphoinositide kinase (PIKfyve), then FAB1/PIKfyve produces PtdIns(3,5)P2 from PtdIns3P to mediate late endosome maturation in yeast (Saccharomyces cerevisiae) and animals (Ho et al., 2012; Jean and Kiger, 2012). PtdIns(3,5)P2 has crucial roles in the maintenance of lysosome/vacuole morphology and acidification, membrane trafficking of proteins, autophagy, and signaling mediation in response to various stresses (Shisheva, 2008).FAB1 was discovered in yeast, where mutations were found to result in the formation of aploid and binucleate cells (hence its name FAB). In addition, a loss of Fab1p function causes defects in vacuole function and morphology, cell surface integrity, and cell growth (Yamamoto et al., 1995). In mammalian cells, this kinase is called PIKfyve (FYVE is a PI3P-binding domain). FAB1/PIKfyve forms a protein complex with an adaptor-like protein, Vacuole14 (Bonangelino et al., 1997) and PtdIns(3,5)P2 5-phosphatase (Fig. 4; Gary et al., 2002), indicating that the FAB1 complex catalyzes both PtdIns(3,5)P2 synthesis and turnover simultaneously. In mammalian cells, interference of FAB1/PIKfyve function causes severe defects during embryogenesis, resulting in embryonic lethality in Drosophila spp., Caenorhabditis elegans, and mice (Nicot et al., 2006; Rusten et al., 2006; Ikonomov et al., 2011; Takasuga et al., 2013). Whereas most genomes from human to yeast contain a single-copy gene, the Arabidopsis genome codes for four FAB1 genes (FAB1A–D), of which only FAB1A and FAB1B contain a FYVE domain (Mueller-Roeber and Pical, 2002), and fab1a/fab1b double mutant reveals male gametophyte lethality phenotype in Arabidopsis (Whitley et al., 2009). The mutant pollen shows severe defects in vacuolar reorganization following the first mitotic division of development, suggesting an important role of FAB1 and PtdIns(3,5)P2 in vacuolar rearrangement for pollen development (Whitley et al., 2009).Open in a separate windowFigure 4.Localization of endosomal markers upon down-regulation of FAB1A/B or inhibition of PtdIns(3,5)P2 synthesis in young root cortical cells. Localization of mRFP-SYP43, mRFP-vesicle-associated membrane protein (VAMP727), mRFP-ARA7, and SNX1-mRFP without estradiol (A, E, I, and M) or with estradiol (B, F, J, and N) in the FAB1A/B-amiRNA line, or wild-type (WT) plants without YM201636 (C, G, K, and O) or with YM201636 (D, H, L, and P). Bar = 10 μm. Measurement of fluorescent dot structures (Q). Data represent fluorescent dots per cell (mean ± sd). *, P < 0.001 (Student’s t test).We previously developed a transgenic Arabidopsis line that is able to conditionally down-regulate FAB1A and FAB1B expression simultaneously, and demonstrated that a loss of FAB1 function causes various abnormal phenotypes, including growth inhibition, hypersensitivity to exogenous auxin, disturbance of root gravitropism, and floral organ abnormalities (Hirano et al., 2011). In addition, we found that down-regulation of FAB1A/B expression impaired endomembrane homeostasis, including endocytosis, vacuole formation, and vacuolar acidification, likely causing pleiotropic developmental phenotypes that mostly related to the auxin signaling in Arabidopsis (Hirano et al., 2011; Hirano and Sato, 2011). In plants, auxin is a crucial phytohormone that has a wide variety of physiological roles associated with growth, development, and tropic responses (Zhao, 2010). The polar cell-to-cell transport of auxin is mediated by auxin transporters localized on the plasma membrane (PM), such as PIN-FORMED (PIN) proteins (Vieten et al., 2007; Feraru and Friml, 2008). PINs are used as model molecules for polarity establishment on the PM in Arabidopsis. The establishment of PIN polarity is accomplished by the recycling of PINs between the PM and endosomal compartments comprising the trans-Golgi network/early endosomes (TGN/EEs) and the late endosomes (LEs)/prevacuolar compartments. The PIN-recycling pathway is mediated by multiple endosomal regulatory proteins, such as Rab family GTPases and Sorting Nexin (SNX; Jaillais et al., 2006; Park and Jürgens, 2011).Rab proteins function as molecular switches to regulate the tethering and fusion step of transport vesicles to target membranes. Rab5 members of the Rab GTPases have various functions in the endocytic pathway in eukaryotes. The maturation of the early-to-late endosomes is regulated by Rab5-to-Rab7 conversion, which is regulated by the Mon1/Sand-1-Ccz1 complex (Nordmann et al., 2010; Poteryaev et al., 2010). In plants, Rab5-family proteins, Ara6 and Ara7, and Rha1 play important roles in Rab5-mediated endosomal trafficking including the vacuolar trafficking pathway, thereby regulating of the polar transport of auxin and responses to environmental conditions (Ebine et al., 2011; Inoue et al., 2013).SNXs are composed of two conserved domains: the PHOX domain, involved in the interaction with the phosphoinositides, PtdIns3P and PtdIns (3,5)P2, in the endosomal membrane in animals (Cozier et al., 2002), and the BAR domain, mediating dimerization and binding to curved membranes (Peter et al., 2004). Loss of SNX function disrupts the stable association of the retromer subcomplex, VPS26-Vps29-Vps35, with endosomal membranes, and thus results in retromer dysfunction, indicating that SNXs have a crucial role in the assembly and maintenance of the core retromer function (Teasdale et al., 2001; Cullen and Korswagen, 2012). The first plant SNX was identified as a protein that interacts with various receptor kinases in Brassica oleracea (Vanoosthuyse et al., 2003), and then three SNX genes (SNX1, SNX2a, and SNX2b) were identified in Arabidopsis. The snx1 null mutant exhibits a semidwarf phenotype with other subtle developmental defects (Pourcher et al., 2010). SNX1 is localized to the late endosome and is involved in PIN2 recycling between endosomes and the PM (Jaillais et al., 2006). SNX1 has been reported to interact with cortical microtubules via the microtubule-associated protein Cytoplasmic Linker Associated Protein (CLASP), and the clasp1 null mutant displays aberrant SNX1 endosomes and enhanced PIN2 degradation in the lytic vacuoles, suggesting that an association of SNX1 endosomes and CLASP is important for recycling of PIN transporters (Ambrose et al., 2013).Although many analyses of FAB1/PIKfyve, Rab5 family GTPases, SNXs, and microtubles have been reported, and there are significant similarities in endosomal trafficking, a functional relationship between them is still largely obscure.In this study, we demonstrate that FAB1 produced PtdIns(3,5)P2 in Arabidopsis, and knockdown of FAB1 expression or inhibition of FAB1 activity with a FAB1/PIKfyve inhibitor, YM201636, decreased PtdIns(3,5)P2 content. We also found that FAB1 and its product PtdIns(3,5)P2 mediate the late endosome maturation by recruiting endosomal effector molecules, Ara7 and SNX1, onto endosomes to establish endosome-cortical microtubule interaction. Subsequently, the basal polarity of PIN2 in young cortical cells and PIN1 in stele cells is achieved.  相似文献   
88.

Introduction

Tools that allow for in silico optimization of available malaria control strategies can assist the decision-making process for prioritizing interventions. The OpenMalaria stochastic simulation modeling platform can be applied to simulate the impact of interventions singly and in combination as implemented in Rachuonyo South District, western Kenya, to support this goal.

Methods

Combinations of malaria interventions were simulated using a previously-published, validated model of malaria epidemiology and control in the study area. An economic model of the costs of case management and malaria control interventions in Kenya was applied to simulation results and cost-effectiveness of each intervention combination compared to the corresponding simulated outputs of a scenario without interventions. Uncertainty was evaluated by varying health system and intervention delivery parameters.

Results

The intervention strategy with the greatest simulated health impact employed long lasting insecticide treated net (LLIN) use by 80% of the population, 90% of households covered by indoor residual spraying (IRS) with deployment starting in April, and intermittent screen and treat (IST) of school children using Artemether lumefantrine (AL) with 80% coverage twice per term. However, the current malaria control strategy in the study area including LLIN use of 56% and IRS coverage of 70% was the most cost effective at reducing disability-adjusted life years (DALYs) over a five year period.

Conclusions

All the simulated intervention combinations can be considered cost effective in the context of available resources for health in Kenya. Increasing coverage of vector control interventions has a larger simulated impact compared to adding IST to the current implementation strategy, suggesting that transmission in the study area is not at a level to warrant replacing vector control to a school-based screen and treat program. These results have the potential to assist malaria control program managers in the study area in adding new or changing implementation of current interventions.  相似文献   
89.
Plant cells respond to different biotic and abiotic stresses by producing various uncommon phospholipids that are believed to play key roles in cell signalling. We can predict how they work because animal and yeast proteins have been shown to have specific lipid-binding domains, which act as docking sites. When such proteins are recruited to the membrane locations where these phospholipids are synthesized, the phospholipids activate them directly, by inducing a conformational change, or indirectly, by juxtaposing them with an activator protein. The same lipid-binding domains are present in Arabidopsis proteins. We believe that they represent an untapped well of information about plant lipid signalling.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号