首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   6篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   5篇
  2011年   6篇
  2010年   2篇
  2009年   2篇
  2008年   9篇
  2007年   2篇
  2006年   8篇
  2005年   5篇
  2004年   6篇
  2003年   2篇
  2002年   4篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1994年   1篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1984年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1972年   2篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1967年   4篇
  1965年   1篇
排序方式: 共有111条查询结果,搜索用时 15 毫秒
101.
Ousaka N  Inai Y  Okabe T 《Biopolymers》2006,83(4):337-351
Chiral interaction of helical peptide with chiral molecule, and concomitant induction in its helix sense have been demonstrated in optically inactive nonapeptide (1) possessing Gly at its N-terminus: H-Gly-(Delta(Z)Phe-Aib)(4)-OCH(3) (1: Delta(Z)Phe = Z-dehydrophenylalanine; Aib = alpha-aminoisobutyric acid). Spectroscopic measurements [mainly nuclear magnetic resonance (NMR) and circular diochroism (CD)] as well as theoretical simulation have been carried out for that purpose. Peptide 1 in the 3(10)-helix tends to adopt preferentially a right-handed screw sense by chiral Boc-L-amino acid (Boc: t-butoxycarbonyl). Induction in the helix sense through the noncovalent chiral domino effect should be derived primarily from the complex supported by the three-point coordination on the N-terminal sequence. Thus the 3(10)-helical terminus consisting of only alpha-amino acid residues enables chiral recognition of the Boc-amino acid molecule, leading to modulation of the original chain asymmetry. Dynamics in the helix-sense induction also have been discussed on the basis of a low-temperature NMR study. Furthermore, the inversion of induced helix sense has been achieved through solvent effects.  相似文献   
102.
To understand the terminal effect of chiral residue for determining a helical screw sense, we adopted five kinds of peptides IV containing N‐ and/or C‐terminal chiral Leu residue(s): Boc–L ‐Leu–(Aib–ΔPhe)2–Aib–OMe ( I ), Boc–(Aib–ΔPhe)2–L ‐Leu–OMe ( II ), Boc–L ‐Leu–(Aib–ΔPhe)2–L ‐Leu–OMe ( III ), Boc–D ‐Leu–(Aib–ΔPhe)2–L ‐Leu–OMe ( IV ), and Boc–D ‐Leu–(Aib–ΔPhe)2–Aib–OMe ( V ). The segment –(Aib–ΔPhe)2– was used for a backbone composed of two “enantiomeric” (left‐/right‐handed) helices. Actually, this could be confirmed by 1H‐nmr [nuclear Overhauser effect (NOE) and solvent accessibility of NH resonances] and CD spectroscopy on Boc–(Aib–ΔPhe)2–Aib–OMe, which took a left‐/right‐handed 310‐helix. Peptides IV were also found to take 310‐type helical conformations in CDCl3, from difference NOE measurement and solvent accessibility of NH resonances. Chloroform, acetonitrile, methanol, and tetrahydrofuran were used for CD measurement. The CD spectra of peptides IIII in all solvents showed marked exciton couplets with a positive peak at longer wavelengths, indicating that their main chains prefer a left‐handed screw sense over a right‐handed one. Peptide V in all solvents showed exciton couplets with a negative peak at longer wavelengths, indicating it prefers a right‐handed screw sense. Peptide IV in chloroform showed a nonsplit type CD pattern having only a small negative signal around 280 nm, meaning that left‐ and right‐handed helices should exist with almost the same content. In the other solvents, peptide IV showed exciton couplets with a negative peak at longer wavelengths, corresponding to a right‐handed screw sense. From conformational energy calculation and the above 1H‐nmr studies, an N‐ or C‐terminal L ‐Leu residue in the lowest energy left‐handed 310‐helical conformation was found to take an irregular conformation that deviates from a left‐handed helix. The positional effect of the L ‐residue on helical screw sense was discussed based on CD data of peptides IV and of Boc–(L ‐Leu–ΔPhe)n–L ‐Leu–OMe (n = 2 and 3). © 1999 John Wiley & Sons, Inc. Biopoly 49: 551–564, 1999  相似文献   
103.
104.
Monoclonal antibody MI315 was produced against hamster tooth germ homogenate by in vitro immunization. It was found that MI315 reacted with enamel matrix, ameloblasts, and bone matrix at an early stage of osteogenesis. Decalcified tissues of rat femurs and mandibles were examined with MI315 using indirect immunofluorescence. In endochondral ossification of femurs, immunoreactivity was found in bone extracellular matrix (ECM) deposited on the surface of the cartilage core of primary spongiosa, but not in the cartilage core itself. In intramembranous ossification of 0-day-old rat mandibles, intense immunofluorescence was detected in bone ECM and a few young osteocytes, but not in osteoblasts. Immunoreactivity in bone ECM of 2-day-old rats decreased and almost disappeared from bone ECM of 4-day-old rats. Although in nondecalcified sections of 0-day-old rats, negligible immunofluorescence was detected in bone ECM which showed positive staining in decalcified tissues, the immunostaining appeared after decalcification using ethylenediaminetetraacetic acid (EDTA). These results indicate that a substance(s), which had a common epitope with an enamel-derived protein(s), existed in immature bone ECM of both endochondral and intramembranous ossification, and that it might be masked by bone mineral. Monoclonal antibody MI315 is a useful tool to investigate the time- and position-specific changes in osteogenesis and amelogenesis.  相似文献   
105.
106.
107.
We isolated the transmembrane and coiled‐coil domains 2 (Tmco2) gene using a polymerase chain reaction‐based subtraction technique. Tmco2 is predominantly expressed in rat testes starting from 4 weeks of age. Rat TMCO2 consists of 187 amino acids with a predicted molecular mass of 20.6 kDa. When expressed in COS7 cells, TMCO2 was found as vesicle‐like structures in the cytoplasm, whereas TMCO2ΔTM lacking the transmembrane (TM) region was found diffused in the cytoplasm. These results suggest that the TM region in TMCO2 is essential for its specificity of localization. Immunocytochemical analyzes indicated that rat TMCO2 was localized as small semiluminate bodies or cap‐like structures in the vicinity of round spermatid nuclei and as curved lines associated with nuclei of elongated spermatids and caput epididymal spermatozoa. However, it was detected in only a small part of cauda epididymal spermatozoa. Double immunolabeling of the spermatids and spermatozoa with the anti‐TMCO2 antibody and the monoclonal anti‐MN7 antibody showed that TMCO2 was predominantly associated with the inner acrosomal membrane in spermatids and caput epididymal spermatozoa. Our findings suggest that TMCO2 might be involved in the process of acrosome biogenesis, especially binding of acrosome to a nucleus, during spermiogenesis.  相似文献   
108.
109.
We accomplished divergent synthesis of potent kinase inhibitor BAY 61-3606 (1) and 27 derivatives via conjugation of imidazo[1,2-c]pyrimidine and indole ring compounds with aromatic (including pyridine) derivatives by means of palladium-catalyzed cross-coupling reaction. Spleen tyrosine kinase (Syk) and germinal center kinase (Gck, MAP4K2) inhibition assays showed that some of the synthesized compounds were selective Gck inhibitors.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号