首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1087篇
  免费   48篇
  2021年   6篇
  2019年   6篇
  2018年   10篇
  2017年   6篇
  2016年   14篇
  2015年   28篇
  2014年   31篇
  2013年   51篇
  2012年   54篇
  2011年   56篇
  2010年   35篇
  2009年   29篇
  2008年   44篇
  2007年   36篇
  2006年   44篇
  2005年   54篇
  2004年   57篇
  2003年   54篇
  2002年   53篇
  2001年   37篇
  2000年   39篇
  1999年   38篇
  1998年   8篇
  1997年   13篇
  1996年   9篇
  1995年   11篇
  1994年   10篇
  1993年   6篇
  1992年   25篇
  1991年   24篇
  1990年   36篇
  1989年   18篇
  1988年   18篇
  1987年   30篇
  1986年   19篇
  1985年   18篇
  1984年   13篇
  1983年   13篇
  1982年   10篇
  1981年   4篇
  1980年   9篇
  1979年   15篇
  1978年   4篇
  1977年   4篇
  1974年   5篇
  1973年   3篇
  1972年   3篇
  1970年   6篇
  1968年   3篇
  1967年   3篇
排序方式: 共有1135条查询结果,搜索用时 15 毫秒
121.
122.
Squalene synthase (SS) catalyzes the biosynthesis of squalene, the first specific intermediate in the cholesterol biosynthetic pathway. To test the feasibility of lowering plasma cholesterol by inhibiting hepatic SS, we generated mice in which SS is specifically knocked out in the liver (L-SSKO) using Cre-loxP technology. Hepatic SS activity of L-SSKO mice was reduced by >90%. In addition, cholesterol biosynthesis in the liver slices was almost eliminated. Although the hepatic squalene contents were markedly reduced in L-SSKO mice, the hepatic contents of cholesterol and its precursors distal to squalene were indistinguishable from those of control mice, indicating the presence of sufficient centripetal flow of cholesterol and/or its precursors from the extrahepatic tissues. L-SSKO mice showed a transient liver dysfunction with moderate hepatomegaly presumably secondary to increased farnesol production. In a fed state, the plasma total cholesterol and triglyceride were significantly reduced in L-SSKO mice, primarily owing to reduced hepatic VLDL secretion. In a fasted state, the hypolipidemic effect was lost. mRNA expression of liver X receptor α target genes was reduced, while that of sterol-regulatory element binding protein 2 target genes was increased. In conclusion, liver-specific ablation of SS inhibits hepatic cholesterol biosynthesis and induces hypolipidemia without increasing significant mortality.  相似文献   
123.
124.
Lamellarin α and six different types of lamellarin α 20-sulfate analogues were synthesized and their structure–activity relationships were investigated using a single round HIV-1 vector infection assay. All lamellarin sulfates having pentacyclic lamellarin core exhibited anti-HIV-1 activity at a 10 μM concentration range regardless of the number and position of the sulfate group. On the other hand, non-sulfated lamellarin α and ring-opened lamellarin sulfate analogues did not affect HIV-1 vector infection in similar concentrations. The lamellarin sulfates utilized in this study did not exhibit unfavorable cytotoxic effect under the concentrations tested (IC50 > 100 μM). Confocal laser scanning microscopic analysis indicated that hydrophilic lamellarin sulfates were hardly incorporated in the cell. HIV-1 Env-mediated cell–cell fusion was suppressed by lamellarin sulfates. These results suggested that lamellarin sulfates have a novel anti-HIV-1 activity besides the previously reported integrase activity inhibition, possibly at a viral entry step of HIV-1 replication.  相似文献   
125.
The development of technologies for the in vitro amplification of abnormal conformations of prion protein (PrP(Sc)) has generated the potential for sensitive detection of prions. Here we developed a new PrP(Sc) amplification assay, called real-time quaking-induced conversion (RT-QUIC), which allows the detection of ≥1 fg of PrP(Sc) in diluted Creutzfeldt-Jakob disease (CJD) brain homogenate. Moreover, we assessed the technique first in a series of Japanese subjects and then in a blind study of 30 cerebrospinal fluid specimens from Australia, which achieved greater than 80% sensitivity and 100% specificity. These findings indicate the promising enhanced diagnostic capacity of RT-QUIC in the antemortem evaluation of suspected CJD.  相似文献   
126.
Adenosine A(2A) receptors (A2ARs) are thought to interact negatively with the dopamine D(2) receptor (D2R), so selective A2AR antagonists have attracted attention as novel treatments for Parkinson's disease (PD). However, no information about the receptor in living patients with PD is available. The purpose of this study was to investigate the relationship between A2ARs and the dopaminergic system in the striata of drug-na?ve PD patients and PD patients with dyskinesia, and alteration of these receptors after antiparkinsonian therapy. We measured binding ability of striatal A2ARs using positron emission tomography (PET) with [7-methyl-(11)C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([(11)C]TMSX) in nine drug-na?ve patients with PD, seven PD patients with mild dyskinesia and six elderly control subjects using PET. The patients and eight normal control subjects were also examined for binding ability of dopamine transporters and D2Rs. Seven of the drug-na?ve patients underwent a second series of PET scans following therapy. We found that the distribution volume ratio of A2ARs in the putamen were larger in the dyskinesic patients than in the control subjects (p<0.05, Tukey-Kramer post hoc test). In the drug-na?ve patients, the binding ability of the A2ARs in the putamen, but not in the head of caudate nucleus, was significantly lower on the more affected side than on the less affected side (p<0.05, paired t-test). In addition, the A2ARs were significantly increased after antiparkinsonian therapy in the bilateral putamen of the drug-na?ve patients (p<0.05, paired t-test) but not in the bilateral head of caudate nucleus. Our study demonstrated that the A2ARs in the putamen were increased in the PD patients with dyskinesia, and also suggest that the A2ARs in the putamen compensate for the asymmetrical decrease of dopamine in drug-na?ve PD patients and that antiparkinsonian therapy increases the A2ARs in the putamen. The A2ARs may play an important role in regulation of parkinsonism in PD.  相似文献   
127.
Adenosine A2A receptors (A2ARs) are thought to interact negatively with the dopamine D2 receptor (D2R), so selective A2AR antagonists have attracted attention as novel treatments for Parkinson''s disease (PD). However, no information about the receptor in living patients with PD is available. The purpose of this study was to investigate the relationship between A2ARs and the dopaminergic system in the striata of drug-naïve PD patients and PD patients with dyskinesia, and alteration of these receptors after antiparkinsonian therapy. We measured binding ability of striatal A2ARs using positron emission tomography (PET) with [7-methyl-11C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([11C]TMSX) in nine drug-naïve patients with PD, seven PD patients with mild dyskinesia and six elderly control subjects using PET. The patients and eight normal control subjects were also examined for binding ability of dopamine transporters and D2Rs. Seven of the drug-naïve patients underwent a second series of PET scans following therapy. We found that the distribution volume ratio of A2ARs in the putamen were larger in the dyskinesic patients than in the control subjects (p<0.05, Tukey-Kramer post hoc test). In the drug-naïve patients, the binding ability of the A2ARs in the putamen, but not in the head of caudate nucleus, was significantly lower on the more affected side than on the less affected side (p<0.05, paired t-test). In addition, the A2ARs were significantly increased after antiparkinsonian therapy in the bilateral putamen of the drug-naïve patients (p<0.05, paired t-test) but not in the bilateral head of caudate nucleus. Our study demonstrated that the A2ARs in the putamen were increased in the PD patients with dyskinesia, and also suggest that the A2ARs in the putamen compensate for the asymmetrical decrease of dopamine in drug-naïve PD patients and that antiparkinsonian therapy increases the A2ARs in the putamen. The A2ARs may play an important role in regulation of parkinsonism in PD.  相似文献   
128.
Orexin-A (ORX-A) and orexin-B (ORX-B), also called hypocretin-1 and hypocretin-2, respectively, act upon orexin 1 (OX1R) and orexin 2 (OX2R) receptors, and are involved in the regulation of sleep-wakefulness and energy homeostasis. Orexin neurons in the lateral hypothalamic perifornical region project heavily to the paraventricular nucleus of the thalamus (PVT), which is deeply involved in the control of motivated behaviors. In the present study, electrophysiological and cytosolic Ca2+ concentration ([Ca2+]i) imaging studies on the effects of ORX-A and ORX-B on neurons in the PVT were carried out in rat brain slice preparations. ORX-A and/or ORX-B were applied extracellularly in the perfusate. Extracellular recordings showed that about 80% of the PVT neurons were excited dose-dependently by both ORX-A and ORX-B at concentrations of 10(-8) to 10(-6)M, and the increase in firing rate was about three times larger for ORX-B than for ORX-A at 10(-7)M. When both ORX-A and ORX-B were applied simultaneously at 10(-7)M, the increase in firing rate was almost equal to that of ORX-B at 10(-7)M, suggesting that the PVT neurons do not show a high affinity to ORX-A which is expected if they have OX1R receptors. The excitatory effect of ORX-B was seen in low Ca2+ and high Mg2+ ACSF as well as in normal ACSF, and the increase in firing rate was greater in low Ca2+ and high Mg2+ ACSF than in normal ACSF. [Ca2+]i imaging studies demonstrated that [Ca2+]i was increased in about 50% of the PVT neurons by both 10(-7)M ORX-A and ORX-B with a stronger effect for ORX-B, and the increase in [Ca2+]i induced by ORX-B was abolished in Ca2+-free ACSF, suggesting that ORX-B does not release Ca2+ from intracellular Ca2+ stores. Subsequent whole cell patch clamp recordings revealed that an after hyperpolarization seen following each action potential in normal ACSF disappeared in Ca2+-free ACSF, and the mean magnitude of the depolarization induced by ORX-B was same in normal, Ca2+-free and TTX-containing Ca2+-free ACSFs. Furthermore, ORX-B-induced depolarization was reversed to hyperpolarization when membrane potential was lowered to about -97 mV, and an increase of extracellular K+ concentration from 4.25 to 13.25 mM abolished the ORX-B-induced depolarization, indicating that the ORX-B-induced depolarization is associated with an increase in the membrane resistance resulting from a closure of K+ channels. These results suggest that orexins depolarize and excite post-synaptically PVT neurons via OX2R receptors, and that orexin-activated PVT neurons play a role in the integration of sleep-wakefulness and energy homeostasis, and in the control of motivated behaviors.  相似文献   
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号