首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   356篇
  免费   37篇
  2022年   1篇
  2021年   9篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   9篇
  2016年   6篇
  2015年   15篇
  2014年   20篇
  2013年   24篇
  2012年   23篇
  2011年   22篇
  2010年   14篇
  2009年   16篇
  2008年   16篇
  2007年   22篇
  2006年   19篇
  2005年   14篇
  2004年   19篇
  2003年   19篇
  2002年   14篇
  2001年   6篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1997年   8篇
  1996年   4篇
  1995年   10篇
  1994年   4篇
  1993年   7篇
  1992年   3篇
  1991年   4篇
  1990年   6篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1976年   2篇
  1975年   3篇
  1974年   4篇
  1973年   2篇
排序方式: 共有393条查询结果,搜索用时 15 毫秒
41.
Autophagic degradation of ubiquitinated protein aggregates is important for cell survival, but it is not known how the autophagic machinery recognizes such aggregates. In this study, we report that polymerization of the polyubiquitin-binding protein p62/SQSTM1 yields protein bodies that either reside free in the cytosol and nucleus or occur within autophagosomes and lysosomal structures. Inhibition of autophagy led to an increase in the size and number of p62 bodies and p62 protein levels. The autophagic marker light chain 3 (LC3) colocalized with p62 bodies and co-immunoprecipitated with p62, suggesting that these two proteins participate in the same complexes. The depletion of p62 inhibited recruitment of LC3 to autophagosomes under starvation conditions. Strikingly, p62 and LC3 formed a shell surrounding aggregates of mutant huntingtin. Reduction of p62 protein levels or interference with p62 function significantly increased cell death that was induced by the expression of mutant huntingtin. We suggest that p62 may, via LC3, be involved in linking polyubiquitinated protein aggregates to the autophagy machinery.  相似文献   
42.
Autophagy is the main eukaryotic degradation pathway for long-lived proteins, protein aggregates, and cytosolic organelles. Although the protein machinery involved in the biogenesis of autophagic vesicles is well described, very little is known about the mechanism of cytosolic transport of autophagosomes. In this study, we have identified an adaptor protein complex, formed by the two autophagic membrane-associated proteins LC3 and Rab7 and the novel FYVE and coiled-coil (CC) domain–containing protein FYCO1, that promotes microtubule (MT) plus end–directed transport of autophagic vesicles. We have characterized the LC3-, Rab7-, and phosphatidylinositol-3-phosphate–binding domains in FYCO1 and mapped part of the CC region essential for MT plus end–directed transport. We also propose a mechanism for selective autophagosomal membrane recruitment of FYCO1.  相似文献   
43.
p62, also known as sequestosome1 (SQSTM1), A170, or ZIP, is a multifunctional protein implicated in several signal transduction pathways. p62 is induced by various forms of cellular stress, is degraded by autophagy, and acts as a cargo receptor for autophagic degradation of ubiquitinated targets. It is also suggested to shuttle ubiquitinated proteins for proteasomal degradation. p62 is commonly found in cytosolic protein inclusions in patients with protein aggregopathies, it is up-regulated in several forms of human tumors, and mutations in the gene are linked to classical adult onset Paget disease of the bone. To this end, p62 has generally been considered to be a cytosolic protein, and little attention has been paid to possible nuclear roles of this protein. Here, we present evidence that p62 shuttles continuously between nuclear and cytosolic compartments at a high rate. The protein is also found in nuclear promyelocytic leukemia bodies. We show that p62 contains two nuclear localization signals and a nuclear export signal. Our data suggest that the nucleocytoplasmic shuttling of p62 is modulated by phosphorylations at or near the most important nuclear localization signal, NLS2. The aggregation of p62 in cytosolic bodies also regulates the transport of p62 between the compartments. We found p62 to be essential for accumulation of polyubiquitinated proteins in promyelocytic leukemia bodies upon inhibition of nuclear protein export. Furthermore, p62 contributed to the assembly of proteasome-containing degradative compartments in the vicinity of nuclear aggregates containing polyglutamine-expanded Ataxin1Q84 and to the degradation of Ataxin1Q84.  相似文献   
44.
A genetic linkage map of the horse consisting of 742 markers, which comprises a single linkage group for each of the autosomes and the X chromosome, is presented. The map has been generated from two three-generation full-sibling reference families, sired by the same stallion, in which there are 61 individuals in the F2 generation. Each linkage group has been assigned to a chromosome and oriented with reference to markers mapped by fluorescence in situ hybridization. The average interval between markers is 3.7 cM and the linkage groups collectively span 2772 cM. The 742 markers comprise 734 microsatellite and 8 gene-based markers. The utility of the microsatellite markers for comparative mapping has been significantly enhanced by comparing their flanking sequences with the human genome sequence; this enabled conserved segments between human and horse to be identified. The new map provides a valuable resource for genetically mapping traits of interest in the horse.  相似文献   
45.
Centromere repositioning (CR) is a recently discovered biological phenomenon consisting of the emergence of a new centromere along a chromosome and the inactivation of the old one. After a CR, the primary constriction and the centromeric function are localized in a new position while the order of physical markers on the chromosome remains unchanged. These events profoundly affect chromosomal architecture. Since horses, asses, and zebras, whose evolutionary divergence is relatively recent, show remarkable morphological similarity and capacity to interbreed despite their chromosomes differing considerably, we investigated the role of CR in the karyotype evolution of the genus Equus. Using appropriate panels of BAC clones in FISH experiments, we compared the centromere position and marker order arrangement among orthologous chromosomes of Burchelli's zebra (Equus burchelli), donkey (Equus asinus), and horse (Equus caballus). Surprisingly, at least eight CRs took place during the evolution of this genus. Even more surprisingly, five cases of CR have occurred in the donkey after its divergence from zebra, that is, in a very short evolutionary time (approximately 1 million years).These findings suggest that in some species the CR phenomenon could have played an important role in karyotype shaping, with potential consequences on population dynamics and speciation.  相似文献   
46.
47.
This review summarises the state of knowledge of both viral and bacterial diseases of Atlantic cod Gadus morhua, and their diagnosis, prophylaxis and treatment. The most important losses have been at the larval and juvenile stages, and vibriosis has long been the most important bacterial disease in cod, with Listonella (Vibrio) anguillarum dominant among pathogenic isolates. Vaccination of cod against pathogens such as L. anguillarum and Aeromonas salmonicida clearly demonstrates that the cod immune system possesses an effective memory and appropriate mechanisms sufficient for protection, at least against some diseases. Well-known viruses such as the nodavirus that causes viral encephalopathy and retinopathy (VER), infectious pancreatic necrosis virus (IPNV) and viral haemorrhagic septicaemia virus (VHSV) have been isolated from Atlantic cod and can be a potential problem under intensive rearing conditions. No commercial vaccines against nodavirus are currently available, whereas vaccines against IPNV infections based upon inactivated virus as well as IPNV recombinant antigens are available. A number of investigations of the pharmacokinetic properties of antibacterial agents in cod and their efficacy in treating bacterial infections have been reviewed.  相似文献   
48.
Epitheliocystis, a disease characterised by cytoplasmic bacterial inclusions (cysts) in the gill and less commonly skin epithelial cells, has been reported in many marine and freshwater fish species and may be associated with mortality. Previously, molecular and ultrastructural analyses have exclusively associated members of the Chlamydiae with such inclusions. Here we investigated a population of farmed Atlantic salmon from the west coast of Norway displaying gill epitheliocystis. Although 'Candidatus Piscichlamydia salmonis', previously reported to be present in such cysts, was detected by PCR in most of the gill samples analysed, this bacterium was found to be a rare member of the gill microbiota, and not associated with the observed cysts as demonstrated by fluorescence in situ hybridization assays. The application of a broad range 16 S rRNA targeted PCR assay instead identified a novel betaproteobacterium as an abundant member of the gill microbiota. Fluorescence in situ hybridization demonstrated that this bacterium, tentatively classified as 'Candidatus Branchiomonas cysticola', was the cyst-forming agent in these samples. While histology and ultrastructure of 'Ca. B. cysticola' cysts revealed forms similar to the reticulate and intermediate bodies described in earlier reports from salmon in seawater, no elementary bodies typical of the chlamydial developmental cycle were observed. In conclusion, this study identified a novel agent of epitheliocystis in sea-farmed Atlantic salmon and demonstrated that these cysts can be caused by bacteria phylogenetically distinct from the Chlamydiae.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号