首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110357篇
  免费   1800篇
  国内免费   1908篇
  2024年   35篇
  2023年   193篇
  2022年   236篇
  2021年   774篇
  2020年   550篇
  2019年   639篇
  2018年   12341篇
  2017年   11034篇
  2016年   8109篇
  2015年   1664篇
  2014年   1537篇
  2013年   1682篇
  2012年   5715篇
  2011年   14199篇
  2010年   12798篇
  2009年   9011篇
  2008年   10734篇
  2007年   12202篇
  2006年   1075篇
  2005年   1185篇
  2004年   1632篇
  2003年   1611篇
  2002年   1357篇
  2001年   503篇
  2000年   379篇
  1999年   237篇
  1998年   188篇
  1997年   176篇
  1996年   171篇
  1995年   132篇
  1994年   121篇
  1993年   135篇
  1992年   138篇
  1991年   138篇
  1990年   94篇
  1989年   61篇
  1988年   72篇
  1987年   52篇
  1986年   49篇
  1985年   57篇
  1984年   54篇
  1983年   54篇
  1982年   34篇
  1981年   24篇
  1980年   30篇
  1979年   23篇
  1975年   30篇
  1972年   256篇
  1971年   280篇
  1962年   26篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Sucrose non-fermenting-1-related protein kinase-1 (SnRK1) plays an important role in metabolic regulation in plant. To understand the molecular mechanism of amino acids and carbohydrate metabolism in Malus hupehensis Rehd. var. pinyiensis Jiang (Pingyi Tiancha, PYTC), a full-length cDNA clone encoding homologue of SnRK1 was isolated from PYTC by Rapid Amplification of cDNA Ends (RACE). The clone, designated as MhSnRK1, contains 2063 nucleotides with an open reading frame of 1548 nucleotides. The deduced 515 amino acids showed high identities with other plant SnRK1 genes. Quantitative real-time PCR analysis revealed this gene was expressed in roots, stems and leaves. Exposing seedlings to nitrate caused and initial decrease in expression of the MhSnRK1 gene in roots, leaves and stems in short term. Ectopic expression of MhSnRK1 in tomato mainly resulted in higher starch content in leaf and red-ripening fruit than wild-type plants. This result supports the hypothesis that overexpression of SnRK1 causes the accumulation of starch in plant cells. All the results suggest that MhSnRK1 may play important roles in carbohydrate and amino acid metabolisms.  相似文献   
22.
The ability of an invasive plant to occupy new areas is often attributed to both morphological and physiological plasticities that allow them to remain viable over a wide range of environmental conditions. Studies addressing the ecological requirements of Microstegium vimineum often consider soil moisture or soil moisture along with other factors as important explanatory components for the establishment and persistence of this invasive monocot. However, controlled studies specifically targeting water relations in M. vimineum are needed. Therefore, the purpose of this study was to determine how different water availabilities influence the growth and physiological performance of M. vimineum. This study utilized experimental microcosms to achieve different water availabilities including low soil moisture (<15% water), moderate soil moisture (ca. 20–30%), and flooded conditions. While both flooded and low soil moisture resulted in diminished growth, M. vimineum still survived under these conditions. Physiological processes including C4 metabolism, minimum stress under low water conditions, and the ability to increase tissue rigidity may confer some advantages to M. vimineum during periods of limiting water conditions. Similarly, the proportionally low root biomass, shallow root structure, and its ability to maintain stable water relations during flooding and/or soil waterlogging may facilitate M. vimineum’s ability to invade mesic habitats. It is likely, therefore, that the capacity to tolerate both low soil moistures and flooded conditions has enhanced the ability of M. vimineum to populate disturbed systems in central North Carolina.  相似文献   
23.
A particularly vexing phenomenon within invasion ecology is the occurrence of spontaneous collapses within seemingly well-established exotic populations. Here, we assess the frequency of collapses among 68 exotic bird populations established in Hawaii, Puerto Rico, Los Angeles and Miami. Following other published definitions, we define a ‘collapse’ as a decline in abundance of ≥90 % within ≤10 years that lasts for at least 3 years. We show that 44 of the 68 exotic bird populations have exhibited declines at some point within their time series. Sixteen of the populations declined sufficiently to be defined as collapsed. It took on average 3.8 ± 1.8 years for populations to decline into a collapsed state, and this state persisted on average for 7.1 ± 6.3 years across (collapsed) populations. We compared the severity and duration of declines across all 44 declining populations according to taxonomic Order and geographic region. Neither variable explained substantial variation in the metrics of collapse. Our results indicate that severe, rapid, and persistent population declines may be common among exotic populations. We suggest that incorporating the probability and persistence of collapses into management decisions can inform efforts to enact control or eradication measures. We also suggest that applying our approach to other taxa and locations is crucial for improving our understanding of when and where collapses are likely to occur.  相似文献   
24.
Invasion of eukaryotic target cells by pathogenic bacteria requires extensive remodelling of the membrane and actin cytoskeleton. Here we show that the remodelling process is regulated by the ubiquitin C‐terminal hydrolase UCH‐L1 that promotes the invasion of epithelial cells by Listeria monocytogenes and Salmonella enterica. Knockdown of UCH‐L1 reduced the uptake of both bacteria, while expression of the catalytically active enzyme promoted efficient internalization in the UCH‐L1‐negative HeLa cell line. The entry of L. monocytogenes involves binding to the receptor tyrosine kinase Met, which leads to receptor phosphorylation and ubiquitination. UCH‐L1 controls the early membrane‐associated events of this triggering cascade since knockdown was associated with altered phosphorylation of the c‐cbl docking site on Tyr1003, reduced ubiquitination of the receptor and altered activation of downstream ERK1/2‐ and AKT‐dependent signalling in response to the natural ligand Hepatocyte Growth Factor (HGF). The regulation of cytoskeleton dynamics was further confirmed by the induction of actin stress fibres in HeLa expressing the active enzyme but not the catalytic mutant UCH‐L1C90S. These findings highlight a previously unrecognized involvement of the ubiquitin cycle in bacterial entry. UCH‐L1 is highly expressed in malignant cells that may therefore be particularly susceptible to invasion by bacteria‐based drug delivery systems.  相似文献   
25.
26.
27.
28.
A new study of divergence in freshwater fish provides strong evidence of rapid, temperature-mediated adaptation. This study is particularly important in the ongoing debate over the extent and significance of evolutionary response to climate change because divergence has occurred in relatively few generations in spite of ongoing gene flow and in the aftermath of a significant genetic bottleneck, factors that have previously been considered obstacles to evolution. Climate change may thus be more likely to foster contemporary evolutionary responses than has been anticipated, and I argue here for the importance of investigating their possible occurrence.  相似文献   
29.
30.
Recent studies have revealed an unexpected synergism between two seemingly unrelated protein families: CCN matricellular proteins and the tumor necrosis factor (TNF) family of cytokines. CCN proteins are dynamically expressed at sites of injury repair and inflammation, where TNF cytokines are also expressed. Although TNFα is an apoptotic inducer in some cancer cells, it activates NFκB to promote survival and proliferation in normal cells, and its cytotoxicity requires inhibition of de novo protein synthesis or NFκB signaling. The presence of CCN1, CCN2, or CCN3 overrides this requirement and unmasks the apoptotic potential of TNFα, thus converting TNFα from a proliferation-promoting protein into an apoptotic inducer. These CCN proteins also enhance the cytotoxicity of other TNF cytokines, including LTα, FasL, and TRAIL. Mechanistically, CCNs function through integrin α6β1 and the heparan sulfate proteoglycan (HSPG) syndecan-4 to induce reactive oxygen species (ROS) accumulation, which is essential for apoptotic synergism. Mutant CCN1 proteins defective for binding α6β1-HSPGs are unable to induce ROS or apoptotic synergism with TNF cytokines. Further, knockin mice that express an α6β1-HSPG-binding defective CCN1 are blunted in TNFα- and Fas-mediated apoptosis, indicating that CCN1 is a physiologic regulator of these processes. These findings implicate CCN proteins as contextual regulators of the inflammatory response by dictating or enhancing the cytotoxicity of TNFα and related cytokines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号