首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2278篇
  免费   156篇
  国内免费   1篇
  2023年   14篇
  2022年   27篇
  2021年   66篇
  2020年   56篇
  2019年   57篇
  2018年   70篇
  2017年   71篇
  2016年   94篇
  2015年   127篇
  2014年   139篇
  2013年   167篇
  2012年   192篇
  2011年   176篇
  2010年   107篇
  2009年   100篇
  2008年   132篇
  2007年   92篇
  2006年   106篇
  2005年   78篇
  2004年   81篇
  2003年   64篇
  2002年   79篇
  2001年   58篇
  2000年   38篇
  1999年   37篇
  1998年   20篇
  1997年   16篇
  1996年   11篇
  1995年   14篇
  1994年   13篇
  1993年   12篇
  1992年   16篇
  1991年   15篇
  1990年   10篇
  1989年   11篇
  1988年   7篇
  1987年   7篇
  1986年   7篇
  1985年   4篇
  1984年   9篇
  1983年   7篇
  1982年   7篇
  1981年   3篇
  1977年   3篇
  1974年   4篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1941年   1篇
排序方式: 共有2435条查询结果,搜索用时 15 毫秒
71.
A thermotolerant fungus identified as Aspergillus niveus was isolated from decomposing materials and it has produced excellent levels of hydrolytic enzymes that degrade plant cell walls. A. niveus germinated faster at 40 °C, presenting protein levels almost twofold higher than at 25 °C. The crude extract of the A. niveus culture was purified by diethylaminoethyl (DEAE)-cellulose, followed by Biogel P-100 column. Polygalacturonase (PG) is a glycoprotein with 37.7 % carbohydrate, molecular mass of 102.6 kDa, and isoelectric point of 5.4. The optimum temperature and pH were 50 °C and 4.0–6.5, respectively. The enzyme was stable at pH 3.0 to 9.0 for 24 h. The DEAE-cellulose derivative was about sixfold more stable at 60 °C than the free enzyme. Moreover, the monoaminoethyl-N-aminoethyl-agarose derivative was tenfold more stable than the free enzyme. PG was 232 % activated by Mn2+. The hydrolysis product of sodium polypectate corresponded at monogalacturonic acid, which classifies the enzyme as an exo-PG. The K m, V max, K cat, and K cat/K m values were 6.7 mg/ml, 230 U/mg, 393.3/s, and 58.7 mg/ml/s, respectively. The N-terminal amino acid sequence presented 80 % identity with PglB1, PglA2, and PglA3 putative exo-PG of Aspergillus fumigatus and an exo-PG Neosartorya fischeri.  相似文献   
72.
73.
Cinnamic acids and quinolines are known as useful scaffolds in the discovery of antitumor agents. Therefore, N-cinnamoylated analogues of chloroquine, recently reported as potent dual-action antimalarials, were evaluated against three different cancer cell lines: MKN-28, Caco-2, and MCF-7. All compounds display anti-proliferative activity in the micromolar range against the three cell lines tested, and most of them were more active than their parent drug, chloroquine, against all cell lines tested. Hence, N-cinnamoyl-chloroquine analogues are a good start towards development of affordable antitumor leads.  相似文献   
74.
Zn(II) complexes with norfloxacin (NOR) in the absence or in the presence of 1,10-phenanthroline (phen) were obtained and characterized. In both complexes, the ligand NOR was coordinated through a keto and a carboxyl oxygen. Tetrahedral and octahedral geometries were proposed for [ZnCl2(NOR)]·H2O (1) and [ZnCl2(NOR)(phen)]·2H2O (2), respectively. Since the biological activity of the chemicals depends on the pH value, pH titrations of the Zn(II) complexes were performed. UV spectroscopic studies of the interaction of the complexes with calf-thymus DNA (CT DNA) have suggested that they can bind to CT DNA with moderate affinity in an intercalative mode. The interactions between the Zn(II) complexes and bovine serum albumin (BSA) were investigated by steady-state and time-resolved fluorescence spectroscopy at pH 7.4. The experimental data showed static quenching of BSA fluorescence, indicating that both complexes bind to BSA. A modified Stern–Volmer plot for the quenching by complex 2 demonstrated preferential binding near one of the two tryptophan residues of BSA. The binding constants obtained (K b ) showed that BSA had a two orders of magnitude higher affinity for complex 2 than for 1. The results also showed that the affinity of both complexes for BSA was much higher than for DNA. This preferential interaction with protein sites could be important to their biological mechanisms of action. The analysis in vitro of the Zn(II) complexes and corresponding ligand were assayed against Trypanosoma cruzi, the causative agent of Chagas disease and the data showed that complex 2 was the most active against bloodstream trypomastigotes.  相似文献   
75.
Neurotoxic organophosphorus compounds (OPs), which are used as pesticides and chemical warfare agents lead to more than 700,000 intoxications worldwide every year. The main target of OPs is the inhibition of acetylcholinesterase (AChE), an enzyme necessary for the control of the neurotransmitter acetylcholine (ACh). The control of ACh function is performed by its hydrolysis with AChE, a process that can be completely interrupted by inhibition of the enzyme by phosphylation with OPs. Compounds used for reactivation of the phosphylated AChE are cationic oximes, which usually possess low membrane and hematoencephalic barrier permeation. Neutral oximes possess a better capacity for hematoencephalic barrier permeation.NMR spectroscopy is a very confident method for monitoring the inhibition and reactivation of enzymes, different from the Ellman test, which is the common method for evaluation of inhibition and reactivation of AChE. In this work 1H NMR was used to test the effect of neutral oximes on inhibition of AChE and reactivation of AChE inhibited with ethyl-paraoxon. The results confirmed that NMR is a very efficient method for monitoring the action of AChE, showing that neutral oximes, which display a significant AChE inhibition activity, are potential drugs for Alzheimer disease. The NMR method showed that a neutral oxime, previously indicated by the Ellman test as better in vitro reactivator of AChE inhibited with paraoxon than pralidoxime (2-PAM), was much less efficient than 2-PAM, confirming that NMR is a better method than the Ellman test.  相似文献   
76.
77.
Industrial lignocellulosic bioethanol processes are exposed to different environmental stresses (such as inhibitor compounds, high temperature, and high solid loadings). In this study, a systematic approach was followed where the liquid and solid fractions were mixed to evaluate the influence of varied solid loadings, and different percentages of liquor were used as liquid fraction to determine inhibitor effect. Ethanol production by simultaneous saccharification and fermentation (SSF) of hydrothermally pretreated Eucalyptus globulus wood (EGW) was studied under combined diverse stress operating conditions (30–38 °C, 60–80 g of liquor from hydrothermal treatment or autohydrolysis (containing inhibitor compounds)/100 g of liquid and liquid to solid ratio between 4 and 6.4 g liquid in SSF/g unwashed pretreated EGW) using an industrial Saccharomyces cerevisiae strain supplemented with low-cost byproducts derived from agro-food industry. Evaluation of these variables revealed that the combination of temperature and higher solid loadings was the most significant variable affecting final ethanol concentration and cellulose to ethanol conversion, whereas solid and autohydrolysis liquor loadings had the most significant impact on ethanol productivity. After optimization, an ethanol concentration of 54 g/L (corresponding to 85 % of conversion and 0.51 g/Lh of productivity at 96 h) was obtained at 37 °C using 60 % of autohydrolysis liquor and 16 % solid loading (liquid to solid ratio of 6.4 g/g). The selection of a suitable strain along with nutritional supplementation enabled to produce noticeable ethanol titers in quite restrictive SSF operating conditions, which can reduce operating cost and boost the economic feasibility of lignocellulose-to-ethanol processes.  相似文献   
78.
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号