首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   4篇
  2023年   2篇
  2022年   3篇
  2021年   9篇
  2020年   12篇
  2019年   14篇
  2018年   9篇
  2017年   10篇
  2016年   5篇
  2015年   10篇
  2014年   25篇
  2013年   22篇
  2012年   17篇
  2011年   19篇
  2010年   9篇
  2009年   5篇
  2008年   6篇
  2007年   8篇
  2006年   6篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
排序方式: 共有198条查询结果,搜索用时 31 毫秒
31.
The GLIS family zinc finger 3 isoform (GLIS3) is a risk gene for Type 1 and Type 2 diabetes, glaucoma and Alzheimer's disease endophenotype. We identified GLIS3 binding sites in insulin secreting cells (INS1) (FDR q < 0.05; enrichment range 1.40–9.11 fold) sharing the motif wrGTTCCCArTAGs, which were enriched in genes involved in neuronal function and autophagy and in risk genes for metabolic and neuro-behavioural diseases. We confirmed experimentally Glis3-mediated regulation of the expression of genes involved in autophagy and neuron function in INS1 and neuronal PC12 cells. Naturally-occurring coding polymorphisms in Glis3 in the Goto-Kakizaki rat model of type 2 diabetes were associated with increased insulin production in vitro and in vivo, suggestive alteration of autophagy in PC12 and INS1 and abnormal neurogenesis in hippocampus neurons. Our results support biological pleiotropy of GLIS3 in pathologies affecting β-cells and neurons and underline the existence of trans?nosology pathways in diabetes and its co-morbidities.  相似文献   
32.
One of the most important challenges in tissue engineering research is the development of biomimetic materials. In this present study, we have investigated the effect of the titanium dioxide (TiO2) nanoparticles on the properties of electrospun mats of poly (hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV), to be used as scaffold. The morphology of electrospun fibers was observed by scanning electron microscopy (SEM). Both pure PHBV and nanocomposites fibers were smooth and uniform. However, there was an increase in fiber diameter with the increase of TiO2 concentration. Thermal properties of PHBV and nanocomposite mats were characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). DSC analysis showed that the crystallization temperature for PHBV shifts to higher temperature in the presence of the nanoparticles, indicating that TiO2 nanoparticles change the process of crystallization of PHBV due to heterogeneous nucleation effect. TGA showed that in the presence of the nanoparticles, the curves are shifted to lower temperatures indicating a decreasing in thermal stability of nanocomposites compared to pure PHBV. To produce scaffolds for tissue engineering, it is important to evaluate the biocompatibility of the material. Cytotoxicity assay showed that TiO2 nanoparticles were not cytotoxic for cells at the concentration used to synthesize the mats. The proliferation of cells on the mats was evaluated by the MTT assay. Results showed that the nanocomposite samples increased cell proliferation compared to the pure PHBV. These results indicate that continuous electrospun fibrous scaffolds may be a good substrate for tissue regeneration.  相似文献   
33.
In this study, we detail the specificity of an aspartic peptidase from Rhizomucor miehei and evaluate the effects of this peptidase on clotting milk using the peptide sequence of k-casein (Abz-LSFMAIQ-EDDnp) and milk powder. Molecular mass of the peptidase was estimated at 37 kDa, and optimum activity was achieved at pH 5.5 and 55 °C. The peptidase was stable at pH values ranging from 3 to 5 and temperatures of up 45 °C for 60 min. Dramatic reductions in proteolytic activity were observed with exposure to sodium dodecyl sulfate, and aluminum and copper (II) chloride. Peptidase was inhibited by pepstatin A, and mass spectrometry analysis identified four peptide fragments (TWSISYGDGSSASGILAK, ASNGGGGEYIFGGYDSTK, GSLTTVPIDNSR, and GWWGITVDRA), similar to rhizopuspepsin. The analysis of catalytic specificity showed that the coagulant activity of the peptidase was higher than the proteolytic activity and that there was a preference for aromatic, basic, and nonpolar amino acids, particularly methionine, with specific cleavage of the peptide bond between phenylalanine and methionine. Thus, this peptidase may function as an important alternative enzyme in milk clotting during the preparation of cheese.  相似文献   
34.

Fungi constitute an invaluable natural resource for scientific research, owing to their diversity; they offer a promising alternative for bioprospecting, thus contributing to biotechnological advances. For a long time, extensive information has been exploited and fungal products have been tested as a source of natural compounds. In this context, enzyme production remains a field of interest, since it offers an efficient alternative to the hazardous processes of chemical transformations. Owing to their vast biodiversity and peculiar biochemical characteristics, two fungal categories, white-rot and anaerobic Neocallimastigomycota, have gathered considerable attention for biotechnological applications. These fungi are known for their ability to depolymerize complex molecular structures and are used in degradation of lignocellulosic biomass, improvement of animal feed digestibility, biogas and bioethanol production, and various other applications. However, there are only limited reports that describe proteolytic enzymes and esterases in these fungi and their synergistic action with lignocellulolytic enzymes on degradation of complex polymers. Thus, in this minireview, we focus on the importance of these organisms in enzyme technology, their bioprospecting, possibility of integration of their enzyme repertoire, and their prospects for future biotechnological innovation.

  相似文献   
35.
During the process of endochondral bone formation, chondrocytes and osteoblasts mineralize their extracellular matrix (ECM) by promoting the synthesis of hydroxyapatite (HA) seed crystals in the sheltered interior of membrane-limited matrix vesicles (MVs). Several lipid and proteins present in the membrane of the MVs mediate the interactions of MVs with the ECM and regulate the initial mineral deposition and posterior propagation. Among the proteins of MV membranes, ion transporters control the availability of phosphate and calcium needed for initial HA deposition. Phosphatases (orphan phosphatase 1, ectonucleotide pyrophosphatase/phosphodiesterase 1 and tissue-nonspecific alkaline phosphatase) play a crucial role in controlling the inorganic pyrophosphate/inorganic phosphate ratio that allows MV-mediated initiation of mineralization. The lipidic microenvironment can help in the nucleation process of first crystals and also plays a crucial physiological role in the function of MV-associated enzymes and transporters (type III sodium-dependent phosphate transporters, annexins and Na+/K+ ATPase). The whole process is mediated and regulated by the action of several molecules and steps, which make the process complex and highly regulated. Liposomes and proteoliposomes, as models of biological membranes, facilitate the understanding of lipid–protein interactions with emphasis on the properties of physicochemical and biochemical processes. In this review, we discuss the use of proteoliposomes as multiple protein carrier systems intended to mimic the various functions of MVs during the initiation and propagation of mineral growth in the course of biomineralization. We focus on studies applying biophysical tools to characterize the biomimetic models in order to gain an understanding of the importance of lipid–protein and lipid–lipid interfaces throughout the process.  相似文献   
36.
We have synthesized the amphiphile photosensitizer PE-porph consisting of a porphyrin bound to a lipid headgroup. We studied by optical microscopy the response to light irradiation of giant unilamellar vesicles of mixtures of unsaturated phosphatidylcholine lipids and PE-porph. In this configuration, singlet oxygen is produced at the bilayer surface by the anchored porphyrin. Under irradiation, the PE-porph decorated giant unilamellar vesicles exhibit a rapid increase in surface area with concomitant morphological changes. We quantify the surface area increase of the bilayers as a function of time and photosensitizer molar fraction. We attribute this expansion to hydroperoxide formation by the reaction of the singlet oxygen with the unsaturated bonds. Considering data from numeric simulations of relative area increase per phospholipid oxidized (15%), we measure the efficiency of the oxidative reactions. We conclude that for every 270 singlet oxygen molecules produced by the layer of anchored porphyrins, one eventually reacts to generate a hydroperoxide species. Remarkably, the integrity of the membrane is preserved in the full experimental range explored here, up to a hydroperoxide content of 60%, inducing an 8% relative area expansion.  相似文献   
37.
Schistosomiasis is a water-borne parasitic illness caused by neoophoran trematodes of the genus Schistosoma. Using classical histological techniques and whole-mount preparations, the present work describes the embryonic development of Schistosoma mansoni eggs in the murine host and compares it with eggs maintained under in vitro conditions. Two pre-embryonic stages occur inside the female worm: the prezygotic stage is characterized by the release of mature oocytes from the female ovary until its fertilization. The zygotic stage encompasses the migration of the zygote through the ootype, where the eggshell is formed, to the uterus. Fully formed eggs are laid still undeveloped, without having suffered any cleavage. In the outside environment, eight embryonic stages can be defined: stage 1 refers to early cleavages and the beginning of yolk fusion. Stage 2 represents late cleavage, with the formation of a stereoblastula and the onset of outer envelope differentiation. Stage 3 is defined by the elongation of the embryonic primordium and the onset of inner envelope formation. At stage 4, the first organ primordia arise. During stages 5 to 7, tissue and organ differentiation occurs (neural mass, epidermis, terebratorium, musculature, and miracidial glands). Stage 7 is characterized by the nuclear condensation of neurons of the central neural mass. Stage 8 refers to the fully formed larva, presenting muscular contraction, cilia, and flame-cell beating. This staging system was compared to a previous classification and could underlie further studies on egg histoproteomics (morphological localizome). The differentiation of embryonic structures and their probable roles in granulomatogenesis are discussed herein. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
38.
39.
Calodium hepaticum (syn. Capillaria hepatica) is a nematode of the Capillariidae family that infects rodents and other mammals. In Brazil, human spurious infections of C. hepaticum have been detected in indigenous or rural communities from the Amazon Basin, but not in the southern states of the country. Here, we report the highest occurrence (13.5% of 37 residents) of C. hepaticum human spurious infection detected in Brazil and the first record in a southern region, Guaraqueçaba. The finding is explained by the area being located in the Atlantic Forest of the state of Paraná, surrounded by preserved forests and because the inhabitants consume the meat of wild mammals.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号