首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1050篇
  免费   74篇
  2023年   8篇
  2022年   9篇
  2021年   31篇
  2020年   21篇
  2019年   8篇
  2018年   25篇
  2017年   14篇
  2016年   28篇
  2015年   44篇
  2014年   47篇
  2013年   63篇
  2012年   88篇
  2011年   77篇
  2010年   46篇
  2009年   35篇
  2008年   61篇
  2007年   41篇
  2006年   36篇
  2005年   43篇
  2004年   30篇
  2003年   34篇
  2002年   19篇
  2001年   33篇
  2000年   16篇
  1999年   17篇
  1998年   6篇
  1997年   8篇
  1996年   8篇
  1995年   7篇
  1994年   7篇
  1993年   5篇
  1992年   14篇
  1991年   12篇
  1990年   20篇
  1989年   9篇
  1988年   17篇
  1987年   12篇
  1986年   9篇
  1985年   12篇
  1984年   6篇
  1982年   8篇
  1981年   5篇
  1980年   9篇
  1979年   13篇
  1978年   4篇
  1973年   13篇
  1972年   11篇
  1971年   9篇
  1970年   6篇
  1969年   3篇
排序方式: 共有1124条查询结果,搜索用时 31 毫秒
991.
Quantitative real-time RT-PCR (qPCR) has been widely used to investigate gene expression during seed germination, a process involving seed transition from dry/physiologically inactive to hydrated/active state. This transition may result in altered expression of many housekeeping genes (HKGs), conventionally used as internal controls, thereby posing a challenge about selection of HKGs in such scenarios. The objectives of this study included identifying valid reference genes for seed priming and germination studies, both of which involve the transition of seed hydration status, and assessing whether or not findings derived from the “seed model” used in this study would also be applicable to other plant species. Eight commonly used HKGs were evaluated in maize seeds during hydropriming and germination. Using Bestkeeper, geNorm, and NormFinder, we provided a rank of stability for these HKGs. Actdf, UBQ, βtub, 18S, Act, and GAPDH were adjudged as valid internal controls by geNorm and NormFinder. Under the second objective, we conducted a case study with spinach seeds collected during osmopriming and germination. Our results indicate that the conclusions derived from maize were applicable to spinach as well, in that 18S exhibited greater expression stability than GAPDH in osmoprimed and germinated seeds; this held true even under stress conditions. While both of these genes were rejected by BestKeeper, we found that 18S exhibited stable expression when “dry” and “hydrated” seeds were analyzed as separate data sets. Although this approach precludes the comparison between “hydrated” and “dry” seeds, it still provides effective comparison among samples of same hydration status.  相似文献   
992.
Eukaryotic ribosomes are preassembled in the nucleus and mature in the cytoplasm. Release of the antiassociation factor Tif6 by the translocase-like guanosine triphosphatase Efl1 is a critical late maturation step. In this paper, we show that a loop of Rpl10 that embraces the P-site transfer ribonucleic acid was required for release of Tif6, 90 Å away. Mutations in this P-site loop blocked 60S maturation but were suppressed by mutations in Tif6 or Efl1. Molecular dynamics simulations of the mutant Efl1 proteins suggest that they promote a conformation change in Efl1 equivalent to changes that elongation factor G and eEF2 undergo during translocation. These results identify molecular signaling from the P-site to Tif6 via Efl1, suggesting that the integrity of the P-site is interrogated during maturation. We propose that Efl1 promotes a functional check of the integrity of the 60S subunit before its first round of translation.  相似文献   
993.
The mechanisms responsible for activation of the MtrAB two-component regulatory signal transduction system, which includes sensor kinase MtrB and response regulator MtrA, are unknown. Here, we show that an MtrB-GFP fusion protein localized to the cell membrane, the septa, and the poles in Mycobacterium tuberculosis and Mycobacterium smegmatis. This localization was independent of MtrB phosphorylation status but dependent upon the assembly of FtsZ, the initiator of cell division. The M. smegmatis mtrB mutant was filamentous, defective for cell division, and contained lysozyme-sensitive cell walls. The mtrB phenotype was complemented by either production of MtrB protein competent for phosphorylation or overproduction of MtrA(Y102C) and MtrA(D13A) mutant proteins exhibiting altered phosphorylation potential, indicating that either MtrB phosphorylation or MtrB independent expression of MtrA regulon genes, including those involved in cell wall processing, are necessary for regulated cell division. In partial support of this observation, we found that the essential cell wall hydrolase ripA is an MtrA target and that the expression of bona fide MtrA targets ripA, fbpB, and dnaA were compromised in the mtrB mutant and partially rescued upon MtrA(Y102C) and MtrA(D13A) overproduction. MtrB septal assembly was compromised upon FtsZ depletion and exposure of cells to mitomycin C, a DNA damaging agent, which interferes with FtsZ ring assembly. Expression of MtrA targets was also compromised under the above conditions, indicating that MtrB septal localization and MtrA regulon expression are linked. We propose that MtrB septal association is a necessary feature of MtrB activation that promotes MtrA phosphorylation and MtrA regulon expression.  相似文献   
994.
Recent evidence suggests a major role of tumor-stromal interactions in pancreatic cancer pathobiology. The chemokine CXCL12 (stromal cell-derived factor 1 (SDF-1)), abundantly produced by stromal cells, promotes progression, metastasis, and chemoresistance of pancreatic cancer cells. On the other hand, pancreatic tumor cell-derived sonic hedgehog (SHH) acts predominantly on stromal cells to induce desmoplasia and, thus, has a paracrine effect on tumorigenesis and therapeutic outcome. In this study, we examined the association between these two proteins of pathological significance in pancreatic cancer. Our data demonstrate that CXCL12 leads to a dose- and time-dependent up-regulation of SHH in pancreatic cancer cells. CXCL12-induced SHH up-regulation is specifically mediated through the receptor CXCR4 and is dependent on the activation of downstream Akt and ERK signaling pathways. Both Akt and ERK cooperatively promote nuclear accumulation of NF-κB by inducing the phosphorylation and destabilization of its inhibitory protein, IκB-α. Using dominant negative IκB-α, a SHH promoter (deletion mutant) reporter, and chromatin immunoprecipitation assays, we demonstrate that CXCL12 exposure enhances direct binding of NF-κB to the SHH promoter and that suppression of NF-κB activation abrogates CXCL12-induced SHH expression. Finally, our data demonstrate a strong correlative expression of CXCR4 and SHH in human pancreatic cancer tissues, whereas their expression is not observed in the normal pancreas. Altogether, our data reveal a novel mechanism underlying aberrant SHH expression in pancreatic cancer and identify a molecular link facilitating bidirectional tumor-stromal interactions.  相似文献   
995.
15-Lipoxygenase-2 protein has been reported to play an important role in normal development of prostate, lung, skin, and cornea tissues. It behaves as a suppressor of prostate cancer development by restricting cell cycle progression and implicating a possible protective role against tumor formation. On the basis of the above report, we selected 15-LOX-2 protein to study the structural classification and functional relationship with associated protein network at computational level. Sequence alignment and protein functional study shows that it contains a highly conserved LOX motif. PLAT domain with PF01477 and LH2 domain with PF00305 were successfully observed. Arachidonate 5-lipoxygenase (PDB ID: 3O8Y) was selected as a template with 42% identity. 3D structure was successfully predicted and verified. Qualitative analysis suggests that the predicted model was reliable and stable with best quality. Quantitative study shows that the model contained expected volume and area with best resolution. Predicted and best evaluated model has been successfully deposited to PMDB database with PMDB ID PM0078035. Active site identification revealed GLU(369), ALA(370), LEU(371), THR(372), HIS(373), LEU(374), HIS(376), SER(377), HIS(378), THR(385), LEU(389), HIS(394), PHE(399), LYS(400), LEU(401), ILE(403) and PRO(404) residues may play a major role during protein-protein, protein-drug and protein-cofactor interactions. STRING database result indicated that IL (4), GPX (2 and 4), PPARG, PTGS (1 and 2), CYP (2J2, 2C8, 4A11 and 2B6), PLA (2G2A, 2G4A, 2G1B and 2G6) and A LOX (5, 15, 12 and 12B) members from their respective gene families have network based functional association with 15-LOX-2.  相似文献   
996.
Diet is an important regulator of the gastrointestinal microbiota. Vitamin A and vitamin D deficiencies result in less diverse, dysbiotic microbial communities and increased susceptibility to infection or injury of the gastrointestinal tract. The vitamin A and vitamin D receptors are nuclear receptors expressed by the host, but not the microbiota. Vitamin A- and vitamin D-mediated regulation of the intestinal epithelium and mucosal immune cells underlies the effects of these nutrients on the microbiota. Vitamin A and vitamin D regulate the expression of tight junction proteins on intestinal epithelial cells that are critical for barrier function in the gut. Other shared functions of vitamin A and vitamin D include the support of innate lymphoid cells that produce IL-22, suppression of IFN-γ and IL-17 by T cells, and induction of regulatory T cells in the mucosal tissues. There are some unique functions of vitamin A and D; for example, vitamin A induces gut homing receptors on T cells, while vitamin D suppresses gut homing receptors on T cells. Together, vitamin A- and vitamin D-mediated regulation of the intestinal epithelium and mucosal immune system shape the microbial communities in the gut to maintain homeostasis.  相似文献   
997.
In most sexually reproducing organisms, meiotic recombination is initiated by DNA double-strand breaks (DSBs) formed by the Spo11 protein. In budding yeast, nine other proteins are also required for DSB formation, but the roles of these proteins and the interactions among them are poorly understood. We report further studies of the behaviors of these proteins. Consistent with other studies, we find that Mei4 and Rec114 bind to chromosomes from leptonema through early pachynema. Both proteins showed only limited colocalization with the meiotic cohesin subunit Rec8, suggesting that Mei4 and Rec114 associated preferentially with chromatin loops. Rec114 localization was independent of other DSB factors, but Mei4 localization was strongly dependent on Rec114 and Mer2. Systematic deletion analysis identified protein regions important for a previously described two-hybrid interaction between Mei4 and Rec114. We also report functional characterization of a previously misannotated 5′ coding exon of REC102. Sequences encoded in this exon are essential for DSB formation and for Rec102 interaction with Rec104, Spo11, Rec114, and Mei4. Finally, we also examined genetic requirements for a set of previously described two-hybrid interactions that can be detected only when the reporter strain is induced to enter meiosis. This analysis reveals new functional dependencies for interactions among the DSB proteins. Taken together, these studies support the view that Mei4, Rec114, and Mer2 make up a functional subgroup that is distinct from other subgroups of the DSB proteins: Spo11–Ski8, Rec102–Rec104, and Mre11–Rad50–Xrs2. These studies also suggest that an essential function of Rec102 and Rec104 is to connect Mei4 and Rec114 to Spo11. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
998.
999.
1000.
Shade caused by the proximity of neighboring vegetation triggers a set of acclimation responses to either avoid or tolerate shade. Comparative analyses between the shade‐avoider Arabidopsis thaliana and the shade‐tolerant Cardamine hirsuta revealed a role for the atypical basic‐helix‐loop‐helix LONG HYPOCOTYL IN FR 1 (HFR1) in maintaining the shade tolerance in C. hirsuta, inhibiting hypocotyl elongation in shade and constraining expression profile of shade‐induced genes. We showed that C. hirsuta HFR1 protein is more stable than its A. thaliana counterpart, likely due to its lower binding affinity to CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), contributing to enhance its biological activity. The enhanced HFR1 total activity is accompanied by an attenuated PHYTOCHROME INTERACTING FACTOR (PIF) activity in C. hirsuta. As a result, the PIF‐HFR1 module is differently balanced, causing a reduced PIF activity and attenuating other PIF‐mediated responses such as warm temperature‐induced hypocotyl elongation (thermomorphogenesis) and dark‐induced senescence. By this mechanism and that of the already‐known of phytochrome A photoreceptor, plants might ensure to properly adapt and thrive in habitats with disparate light amounts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号