首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   15篇
  2023年   1篇
  2021年   3篇
  2020年   4篇
  2019年   4篇
  2018年   8篇
  2017年   7篇
  2016年   6篇
  2015年   16篇
  2014年   11篇
  2013年   10篇
  2012年   18篇
  2011年   17篇
  2010年   10篇
  2009年   5篇
  2008年   15篇
  2007年   14篇
  2006年   15篇
  2005年   7篇
  2004年   13篇
  2003年   5篇
  2002年   9篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有207条查询结果,搜索用时 203 毫秒
151.
Duchenne and Becker muscular dystrophies (DMD and BMD) represent the most frequent neuromuscular diseases in humans (1/3,500–6,000 live male births), characterized by an X-linked recessive pattern of inheritance and therefore affecting mainly male individuals. DMD and BMD are allelic disorders resulting from genetic defects, mostly intragenic deletions, in the dystrophin gene. Using multiplex polymerase chain reaction (PCR), we have analyzed 170 male patients from unrelated families originating from Algeria, showing that 68 % of them harbored deletion events affecting the known 5′ or 3′ hot spot regions. The distal portion was predominantly involved (85 %), whereas 37 distinctive patterns of deletion were identified in our panel. The extent of deletion varied from 1 to 32 exons, although the average number was about four exons. The lack of seven exons (45, 46, 47, 48, 50, 51 and 52), each alone or in combination, represented about 78 % of the alterations encountered, while exon 48 was most frequently involved (50 %). The effect of the deletions showed that the reading frame rule proved mostly true, correlating with the clinical diagnosis suggested. Moreover, the c.525delT mutation in the γ-sarcoglycan gene was present in non-deleted patients (7 %), suggesting that clinical features can still be misleading. Finally, multiplex PCR proved to be a simple, fast and low-cost approach for the molecular diagnosis of dystrophinopathies in Algeria, whereas our data could contribute to the creation of a national registry of DMD/BMD patients in our country, which would give them hope to an access to already available genotype-based therapies.  相似文献   
152.
153.
154.
Here we tested the role of calcium influx factor (CIF) and calcium-independent phospholipase A2 (iPLA2) in activation of Ca2+ release-activated Ca2+ (CRAC) channels and store-operated Ca2+ entry in rat basophilic leukemia (RBL-2H3) cells. We demonstrate that 1) endogenous CIF production may be triggered by Ca2+ release (net loss) as well as by simple buffering of free Ca2+ within the stores, 2) a specific 82-kDa variant of iPLA2beta and its corresponding activity are present in membrane fraction of RBL cells, 3) exogenous CIF (extracted from other species) mimics the effects of endogenous CIF and activates iPLA2beta when applied to cell homogenates but not intact cells, 4) activation of ICRAC can be triggered in resting RBL cells by dialysis with exogenous CIF, 5) molecular or functional inhibition of iPLA2beta prevents activation of ICRAC, which could be rescued by cell dialysis with a human recombinant iPLA2beta, 6) dependence of ICRAC on intracellular pH strictly follows pH dependence of iPLA2beta activity, and 7) (S)-BEL, a chiral enantiomer of suicidal substrate specific for iPLA2beta, could be effectively used for pharmacological inhibition of ICRAC and store-operated Ca2+ entry. These findings validate and significantly advance our understanding of the CIF-iPLA2-dependent mechanism of activation of ICRAC and store-operated Ca2+ entry.  相似文献   
155.
Experimental autoimmune encephalomyelitis is a well-characterized model of cell-mediated autoimmunity. TLRs expressed on APCs recognize microbial components and induce innate immune responses, leading to the elimination of invading infectious agents. Certain TLR agonists have been reported to have adjuvant properties in CNS autoimmune inflammatory demyelination. We report in this study that TLR3 stimulation by polyinosinic-polycytidylic acid, a double-stranded RNA analog, suppresses relapsing demyelination in a murine experimental autoimmune encephalomyelitis model. Disease suppression is associated with the induction of endogenous IFN-beta and the peripheral induction of the CC chemokine CCL2. These data indicate that a preferential activation of the MyD88-independent, type I IFN-inducing TLR pathway has immunoregulatory potential in this organ-specific autoimmune disease.  相似文献   
156.
Our aim in this study was to observe the movements of filarial infective larvae following inoculation into the mammalian host and to assess the effect of vaccination on larval migration, in situ. Here we present recordings of larvae progressing through the subcutaneous tissues and inguinal lymph node of primary infected or vaccinated mice. We used the filaria Litomosoides sigmodontis in BALB/c mice that were necropsied 6 hours after the challenge inoculation of 200 larvae. Subcutaneous tissue sections were taken from the inoculation site and larvae were filmed in order to quantify their movements. Our analyses showed that the subcutaneous larvae were less motile in the vaccinated mice than in primary-infected mice and had more leucocytes attached to the cuticle. We propose that this reduced motility may result in the failure of a majority of larvae to evade the inflammatory reaction, thereby being a possible mechanism involved in the early vaccine-induced protection.  相似文献   
157.
ΔNp73α, a dominant-negative inhibitor of p53 and p73, exhibits antiapoptotic and transforming activity in in vitro models and is often found to be upregulated in human cancers. The mechanisms involved in the regulation of ΔNp73α protein levels in normal and cancer cells are poorly characterized. Here, we show that that IκB kinase beta (IKKβ) increases ΔNp73α protein stability independently of its ability to activate NF-κB. IKKβ associates with and phosphorylates ΔNp73α at serine 422 (S422), leading to its accumulation in the nucleus, where it binds and represses several p53-regulated genes. S422A mutation in ΔNp73α abolished IKKβ-mediated stabilization and inhibition of p53-regulated gene expression. Inhibition of IKKβ activity by chemical inhibitors, overexpression of dominant-negative mutants, or gene silencing by siRNA also resulted in ΔNp73α destabilization, which under these conditions was rapidly translocated into the cytoplasm and degraded by a calpain-mediated mechanism. We also present evidence for the IKKβ and ΔNp73α cross talk in cancer-derived cell lines and primary cancers. Our data unveil a new mechanism involved in the regulation of the p73 and p53 network.  相似文献   
158.
RABL6A (RAB-like 6 isoform A) is a novel protein that was originally identified based on its association with the Alternative Reading Frame (ARF) tumor suppressor. ARF acts through multiple p53-dependent and p53-independent pathways to prevent cancer. How RABL6A functions, to what extent it depends on ARF and p53 activity, and its importance in normal cell biology are entirely unknown. We examined the biological consequences of RABL6A silencing in primary mouse embryo fibroblasts (MEFs) that express or lack ARF, p53 or both proteins. We found that RABL6A depletion caused centrosome amplification, aneuploidy and multinucleation in MEFs regardless of ARF and p53 status. The centrosome amplification in RABL6A depleted p53−/− MEFs resulted from centrosome reduplication via Cdk2-mediated hyperphosphorylation of nucleophosmin (NPM) at threonine-199. Thus, RABL6A prevents centrosome amplification through an ARF/p53-independent mechanism that restricts NPM-T199 phosphorylation. These findings demonstrate an essential role for RABL6A in centrosome regulation and maintenance of chromosome stability in non-transformed cells, key processes that ensure genomic integrity and prevent tumorigenesis.  相似文献   
159.
O-GlcNAcylation (addition of N-acetyl-glucosamine on serine or threonine residues) is a post-translational modification that regulates stability, activity or localization of cytosolic and nuclear proteins. O-linked N-acetylgluocosmaine transferase (OGT) uses UDP-GlcNAc, produced in the hexosamine biosynthetic pathway to O-GlcNacylate proteins. Removal of O-GlcNAc from proteins is catalyzed by the β-N-Acetylglucosaminidase (OGA). Recent evidences suggest that O-GlcNAcylation may affect the growth of cancer cells. However, the consequences of O-GlcNAcylation on anti-cancer therapy have not been evaluated. In this work, we studied the effects of O-GlcNAcylation on tamoxifen-induced cell death in the breast cancer-derived MCF-7 cells. Treatments that increase O-GlcNAcylation (PUGNAc and/or glucosoamine) protected MCF-7 cells from death induced by tamoxifen. In contrast, inhibition of OGT expression by siRNA potentiated the effect of tamoxifen on cell death. Since the PI-3 kinase/Akt pathway is a major regulator of cell survival, we used BRET to evaluate the effect of PUGNAc+glucosamine on PIP3 production. We observed that these treatments stimulated PIP3 production in MCF-7 cells. This effect was associated with an increase in Akt phosphorylation. However, the PI-3 kinase inhibitor LY294002, which abolished the effect of PUGNAc+glucosamine on Akt phosphorylation, did not impair the protective effects of PUGNAc+glucosamine against tamoxifen-induced cell death. These results suggest that the protective effects of O-GlcNAcylation are independent of the PI-3 kinase/Akt pathway. As tamoxifen sensitivity depends on the estrogen receptor (ERα) expression level, we evaluated the effect of PUGNAc+glucosamine on the expression of this receptor. We observed that O-GlcNAcylation-inducing treatment significantly reduced the expression of ERα mRNA and protein, suggesting a potential mechanism for the decreased tamoxifen sensitivity induced by these treatments. Therefore, our results suggest that inhibition of O-GlcNAcylation may constitute an interesting approach to improve the sensitivity of breast cancer to anti-estrogen therapy.  相似文献   
160.
Estrogen receptor (ER) biology reflects the actions of estrogens through the two receptors, ERα and ERβ, although little is known regarding the preference for formation of ER homo- vs. heterodimers, and how this is affected by the level of ligand occupancy and preferential ligand affinity for one of the ER subtypes. In this report, we use a split optical reporter-protein complementation system to demonstrate the physical interaction between ERα and ERβ in response to different ER ligands in cells and, for the first time, by in vivo imaging in living animals. The genetically encoded reporter vectors constructed with the ligand-binding domains of ERα and ERβ, fused to split firefly or Renilla luciferase (Fluc or hRluc) fragments, were used for this study. This molecular proteomic technique was used to detect ERα/ERα or ERβ/ERβ homodimerization, or ERα/ERβ heterodimerization induced by ER subtype-selective and nonselective ligands, and selective ER modulators (SERM), as well as in dimers in which one mutant monomer was unable to bind estradiol. The SERM-bound ERα and ERβ form the strongest dimers, and subtype-preferential homodimerization was seen with ERα-selective ligands (methyl piperidino pyrazole/propyl pyrazole triol) and the ERβ-selective ligands (diarylpropionitrile/tetrahydrochrysene/genistein). We also demonstrated that a single ligand-bound monomer can form homo- or heterodimers with an apo-monomer. Xenografts of human embryonic kidney 293T cells imaged in living mice by bioluminescence showed real-time ligand induction of ERα/ERβ heterodimerization and reversal of dimerization upon ligand withdrawal. The results from this study demonstrate the value of the split luciferase-based complementation system for studying ER-subtype interactions in cells and for evaluating them in living animals by noninvasive imaging. They also probe what combinations of ERα and ERβ dimers might be the mediators of the effects of different types of ER ligands given at different doses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号