首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   3篇
  国内免费   1篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   6篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   8篇
  2010年   4篇
  2009年   14篇
  2008年   12篇
  2007年   12篇
  2006年   2篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
  1998年   1篇
  1988年   1篇
  1984年   1篇
  1975年   1篇
排序方式: 共有102条查询结果,搜索用时 140 毫秒
11.
The role of the kinase homology domain (KHD) in receptor guanylyl cyclases is to regulate the activity of the catalytic guanylyl cyclase domain. The KHD lacks many of the amino acids required for phosphotransfer activity and, therefore, is not expected to possess kinase activity. Guanylyl cyclase activity of the receptor guanylyl cyclase C (GC-C) is modulated by ATP, and computational modeling showed that the KHD can adopt a structure similar to protein kinases, suggesting that the KHD is the site for ATP interaction. A monoclonal antibody, GCC:4D7, raised to the KHD of GC-C, fails to react with GC-C in the presence of ATP and ATP analogues that regulate GC-C catalytic activity, indicating that a conformational change occurs in the KHD on ATP binding. Mapping of the epitope of the antibody through the use of recombinant protein constructs and phage display showed that the epitope for GC-C:4D7 lies immediately C-terminal to a critical lysine residue (Lys516 in GC-C), required for ATP interaction in protein kinases. By employing a novel approach utilizing ATP-agarose affinity chromatography, we demonstrate that the intracellular domain of GC-C and the KHD bind ATP. Mutation of Lys516 to Ala abolishes ATP binding. Thus, this report is the first to show direct ATP binding to the pseudokinase domain of receptor guanylyl cyclase C, as well as to identify dramatic conformational changes that occur in this domain on ATP binding, akin to those seen in catalytically active protein kinases.  相似文献   
12.
Depletion of intracellular glutathione (GSH) is the prime hallmark of the progression of apoptosis. Previously, we reported that curcumin induces reactive oxygen species (ROS)-mediated depletion of GSH, which leads to caspase-dependent and independent apoptosis in mouse fibroblast cells (F. Thayyullathil et al., Free Radic. Biol. Med.45, 1403-1412, 2008). In this study, we investigated the antileukemic potential of curcumin in vitro, and we further examined the molecular mechanisms of curcumin-induced apoptosis in human leukemic cells. Curcumin suppresses the growth of human leukemic cells via ROS-independent GSH depletion, which leads to caspase activation, inhibition of sphingomyelin synthase (SMS) activity, and induction of ceramide (Cer) generation. Pretreatment of leukemic cells with carbobenzoxy-Val-Ala-Asp fluoromethylketone, a universal inhibitor of caspases, abrogates the SMS inhibition and Cer generation, and in turn prevents curcumin-induced cell death. Curcumin treatment of leukemic cells also downregulates the expression of the inhibitor of apoptosis proteins (IAPs), phospho-Akt, c-Myc, and cyclin D1. Extracellular supplementation with GSH attenuates curcumin-induced depletion of GSH, caspase-dependent inhibition of SMS, Cer generation, and downregulation of IAPs, whereas, L-D-buthionine sulfoximine, a widely used inhibitor of GSH synthesis, potentiates GSH depletion, Cer generation, and apoptosis induced by curcumin. Taken together, our findings provide evidence suggesting for the first time that GSH regulates caspase-dependent inhibition of SMS activity, Cer generation, and apoptosis induced by curcumin in human leukemic cells.  相似文献   
13.

Background

In early 2009, a novel influenza A(H1N1) virus that emerged in Mexico and United States rapidly disseminated worldwide. The spread of this virus caused considerable morbidity with over 18000 recorded deaths. The new virus was found to be a reassortant containing gene segments from human, avian and swine influenza viruses.

Methods/Results

The first case of human infection with A(H1N1)pdm09 in Pakistan was detected on 18th June 2009. Since then, 262 laboratory-confirmed cases have been detected during various outbreaks with 29 deaths (as of 31st August 2010). The peak of the epidemic was observed in December with over 51% of total respiratory cases positive for influenza. Representative isolates from Pakistan viruses were sequenced and analyzed antigenically. Sequence analysis of genes coding for surface glycoproteins HA and NA showed high degree of high levels of sequence identity with corresponding genes of regional viruses circulating South East Asia. All tested viruses were sensitive to Oseltamivir in the Neuraminidase Inhibition assays.

Conclusions

Influenza A(H1N1)pdm09 viruses from Pakistan form a homogenous group of viruses. Their HA genes belong to clade 7 and show antigenic profile similar to the vaccine strain A/California/07/2009. These isolates do not show any amino acid changes indicative of high pathogenicity and virulence. It is imperative to continue monitoring of these viruses for identification of potential variants of high virulence or drug resistance.  相似文献   
14.
Periodontal diseases are inflammatory diseases of supporting structures of the tooth. It results in the destruction of the supporting structures and most of the destructive processes involved are host derived. The processes leading to destruction and regeneration of the destroyed tissues are of great interest to both researchers and clinicians. The selective susceptibility of subjects for periodontitis has remained an enigma and wide varieties of risk factors have been implicated for the manifestation and progression of periodontitis. Genetic factors have been a new addition to the list of risk factors for periodontal diseases. With the availability of human genome sequence and the knowledge of the complement of the genes, it should be possible to identify the metabolic pathways involved in periodontal destruction and regeneration. Most forms of periodontitis represent a life-long account of interactions between the genome, behaviour, and environment. The current practical utility of genetic knowledge in periodontitis is limited. The information contained within the human genome can potentially lead to a better understanding of the control mechanisms modulating the production of inflammatory mediators as well as provides potential therapeutic targets for periodontal disease. Allelic variants at multiple gene loci probably influence periodontitis susceptibility.  相似文献   
15.
The effects of salinity (0–400 mM NaCl, marked S0, S100, S200, and S400) on growth, photosynthesis, photosystem 2 (PS2) efficiency, ion relations, and pigment contents were studied in two seashore Cakile maritima ecotypes (Tabarka and Jerba, respectively, sampled from humid and arid bioclimatic areas). Growth of Jerba plants was improved at S100 as compared to S0. Tabarka growth was inhibited by salinity at all NaCl concentrations. Leaf sodium and chloride concentrations increased with medium salinity and were higher in Jerba than in Tabarka plants. Chlorophyll content, net photosynthetic rate, stomatal conductance (g s), and intracellular CO2 concentration were stimulated at moderate salinity (S100) in Jerba plants and inhibited at higher salt concentrations in both ecotypes: g s was the most reduced parameter. The maximum quantum efficiency of PS2 (Fv/Fm), quantum yield, linear electron transport rate, and efficiency of excitation energy capture by open PS2 reaction centres showed no significant changes with increasing salt concentration in Jerba plant and were decreased in Tabarka subjected to S400. However, the efficiency of dissipation of excess photon energy in the PS2 antenna was maintained in Jerba and was increased in Tabarka plants challenged with S400. Hence the relative salt tolerance of Jerba was associated with a better ability to use Na+ and Cl for osmotic adjustment, the absence of pigment degradation, and the concomitant PS2 protection from photodamage.  相似文献   
16.
Triadimefon, potential fungicide cum plant-growth retardant was used in this study to investigate its effect on the growth and the photosynthetic pigment contents of two varieties of Catharanthus roseus (L.) G. Don. The plants of both varieties were subjected to 15 mg l(-1) triadimefon treatment by soil drenching 30, 45, 60, and 75 days after planting (DAP). Plants were uprooted on 90 DAP, and morphological parameters, like plant height, number of leaves, leaf area, root length and fresh and dry weights were determined. The photosynthetic pigments, like chlorophylls a and b, total chlorophyll, carotenoids, floral pigment, anthocyanin, were extracted and estimated. It was observed that plant height, number of leaves and leaf area were decreased and that root length, fresh and dry weights were increased under triadimefon treatment. The photosynthetic and floral pigments were increased under triadimefon treatment in both varieties. The results suggest that the application of this plant-growth retardant (triadimefon) has favourable effects on the reduction of plant height; it can thus be used for replacing manual hand pruning and for improving floral and vegetation colour in bedding plants like C. roseus.  相似文献   
17.
The effect of triadimefon was investigated in a medicinal plant, Catharanthus roseus subjected to water deficit stress. The abscisic acid (ABA) level, DNA and RNA contents and activities of ATPase and protease were found varying in different parts of the plants under treatment. Drought treatment increased the ABA level more than twofold in all parts of the plants. TDM treatment to the drought stressed plants showed highest contents. In roots, stem and leaves, drought stress caused a decrease in the DNA and RNA contents when compared with control and other treatments. TDM treatment with drought increased the nucleic acid contents to the level of the control roots. The activity of ATPase and protease were increased under drought treatment and lowered due to TDM applications. This information could be useful in the field of soil water deficits reclamation efforts by using plant growth regulators.  相似文献   
18.
Two varieties, rosea and alba, of Catharanthus roseus (L.) G. Don. were screened for their water use efficiency under two watering regimes, viz. 60 and 100% filed capacity in the present study. Drought stress was imposed at 60% filed capacity from 30 to 70 days after sowing, while the control pots were maintained at 100% filed capacity throughout the entire growth period. Leaf area duration, cumulative water transpired, water use efficiency, net assimilation rate, mean transpiration rate, harvest index, biomass and yield under the water deficit level were measured from both stressed and well-watered control plants. Water use efficiency significantly increased in both varieties under water stress. Drought stress decreased leaf area duration, cumulative water transpired, net assimilation rate, mean transpiration rate, harvest index, and biomass yield in both varieties studied. Among the varieties, rosea variety showed the best results.  相似文献   
19.
With the advent of molecular biotechnologies, new opportunities are available for plant physiologists to study the relationships between wheat traits and their genetic control. The functional determinations of all genes that participate in drought adaptation or tolerance reactions are expected to provide an integrated understanding of the biochemical and physiological basis of stress responses in wheat. However, despite all the recent technological breakthroughs, the overall contribution of genomics-assisted breeding to the release of drought-resilient wheat cultivars has so far been marginal. This paper critically analyses how biotechnological, genetic and information tools can contribute to accelerating the release of improved, drought-tolerant wheat cultivars. Armed with such information from established models, it will be possible to elucidate the physiological basis of drought tolerance and to select genotypes with an improved yield under water-limited conditions.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号