首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1828篇
  免费   140篇
  2024年   1篇
  2023年   7篇
  2022年   9篇
  2021年   36篇
  2020年   32篇
  2019年   41篇
  2018年   32篇
  2017年   28篇
  2016年   53篇
  2015年   95篇
  2014年   120篇
  2013年   136篇
  2012年   186篇
  2011年   236篇
  2010年   137篇
  2009年   75篇
  2008年   123篇
  2007年   139篇
  2006年   111篇
  2005年   79篇
  2004年   90篇
  2003年   59篇
  2002年   60篇
  2001年   14篇
  2000年   10篇
  1999年   13篇
  1998年   11篇
  1997年   5篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   4篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1974年   1篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有1968条查询结果,搜索用时 15 毫秒
91.
The emergence of antibiotic-resistant bacterial strains is a widespread problem in contemporary medical practice and drug design. It is therefore important to elucidate the underlying mechanism in each case. The methyltransferase AviRa from Streptomyces viridochromogenes mediates resistance to the antibiotic avilamycin, which is closely related to evernimicin, an oligosaccharide antibiotic that has been used in medical studies. The structure of AviRa was determined by X-ray diffraction at 1.5A resolution. Phases were obtained from one selenomethionine residue introduced by site-directed mutagenesis. The chain-fold is similar to that of most methyltransferases, although AviRa contains two additional helices as a specific feature. A putative-binding site for the cofactor S-adenosyl-L-methionine was derived from homologous structures. It agrees with the conserved pattern of interacting amino acid residues. AviRa methylates a specific guanine base within the peptidyltransferase loop of the 23S ribosomal RNA. Guided by the target, the enzyme was docked to the cognate ribosomal surface, where it fit well into a deep cleft without contacting any ribosomal protein. The two additional alpha-helices of AviRa filled a depression in the surface. Since the transferred methyl group of the cofactor is in a pocket beneath the enzyme surface, the targeted guanine base has to flip out for methylation.  相似文献   
92.
Twinfilin is a highly conserved actin monomer-binding protein that regulates cytoskeletal dynamics in organisms from yeast to mammals. In addition to the previously characterized mammalian twinfilin-1, a second protein with approximately 65% sequence identity to twinfilin-1 exists in mouse and humans. However, previous studies failed to identify any actin binding activity in this protein (Rohwer, A., Kittstein, W., Marks, F., and Gschwendt, M. (1999) Eur. J. Biochem. 263, 518-525). Here we show that this protein, which we named twinfilin-2, is indeed an actin monomer-binding protein. Similar to twinfilin-1, mouse twinfilin-2 binds ADP-G-actin with a higher affinity (KD = 0.12 microM) than ATP-G-actin (KD = 1.96 microM) and efficiently inhibits actin filament assembly in vitro. Both mouse twinfilins inhibit the nucleotide exchange on actin monomers and directly interact with capping protein. Furthermore, the actin interactions of mouse twinfilin-1 and twinfilin-2 are inhibited by phosphatidylinositol (4,5)-bisphosphate. Although biochemically very similar, our Northern blots and in situ hybridizations show that these two proteins display distinct expression patterns. Twinfilin-1 is the major isoform in embryos and in most adult mouse non-muscle cell-types, whereas twinfilin-2 is the predominant isoform of adult heart and skeletal muscles. Studies with isoform-specific antibodies demonstrated that although the two proteins show similar localizations in unstimulated cells, they are regulated by different mechanisms. The small GTPases Rac1 and Cdc42 induce the redistribution of twinfilin-1 to membrane ruffles and cell-cell contacts, respectively, but do not affect the localization of twinfilin-2. Taken together, these data show that mammals have two twinfilin isoforms, which are differentially expressed and regulated through distinct cellular signaling pathways.  相似文献   
93.
Angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) have been identified as ligands with different effector functions of the vascular assembly and maturation-mediating receptor tyrosine kinase Tie-2. To understand the molecular interactions of the angiopoietins with their receptor, we have studied the binding of Ang-1 and Ang-2 to the Tie-2 receptor. Enzyme-linked immunosorbent assay-based competition assays and co-immunoprecipitation experiments analyzing the binding of Ang-1 and Ang-2 to truncation mutants of the extracellular domain of Tie-2 showed that the first Ig-like loop of Tie-2 in combination with the epidermal growth factor (EGF)-like repeats (amino acids 1-360) is required for angiopoietin binding. The first Ig-like domain or the EGF-like repeats alone are not capable of binding Ang-1 and Ang-2. Concomitantly, we made the surprising finding that Tie-2 exon-2 knockout mice do express a mutated Tie-2 protein that lacks 104 amino acids of the first Ig-like domain. This mutant Tie-2 receptor is functionally inactive as shown by the lack of ligand binding and receptor phosphorylation. Collectively, the data show that the first 104 amino acids of the Tie-2 receptor are essential but not sufficient for angiopoietin binding. Conversely, the first 360 amino acids (Ig-like domain plus EGF-like repeats) of the Tie-2 receptor are necessary and sufficient to bind both Ang-1 and Ang-2, which suggests that differential receptor binding is not likely to be responsible for the different functions of Ang-1 and Ang-2.  相似文献   
94.
95.
Green fluorescent protein (GFP) fusion constructs in gene therapy research   总被引:16,自引:0,他引:16  
The history of green fluorescent protein (GFP) as a marker is less than 10 years old, but it has already made a major impact on many areas of natural sciences, especially on cell biology and histochemistry. GFP can be detected in living cells without selection or staining and it can be fused to other proteins to yield fluorescent chimeras. The potential of GFP has also been recognised by gene therapy researchers and various GFP-tagged therapeutic proteins have been constructed. These chimeric proteins have been used to determine the expression level, site and time course of the therapeutic gene, or the correlation between gene transfer rate and therapeutic outcome. This review summarises the status of the applications of GFP fusions in gene therapy research.  相似文献   
96.
Views of transcription initiation   总被引:3,自引:0,他引:3  
Young BA  Gruber TM  Gross CA 《Cell》2002,109(4):417-420
  相似文献   
97.
98.
99.
Pleomorphic Trypanosoma brucei strains are characterized by their ability to differentiate from replicating long slender forms into non-dividing short stumpy forms in the mammalian host. The differentiation process can be efficiently induced in vitro by treatment with the membrane-permeable cAMP derivative 8-(4-chlorophenylthio)-cAMP (pCPTcAMP). In contrast, monomorphic T. brucei strains do not differentiate to stumpy forms in the host. Here, we show that exposure of monomorphic, culture-adapted T. brucei bloodstream forms to pCPTcAMP allowed their subsequent differentiation into short stumpy forms. The stumpy nature of pCPTcAMP-treated parasites was confirmed by (1) morphological change, (2) inhibition of growth and DNA synthesis, (3) cell cycle arrest in the G(1)/G(0) phase, (4) expression of NADH diaphorase activity and dihydrolipoamide dehydrogenase, (5) disappearance of the small subunit of ribonucleotide reductase, (6) up-regulation of the major lysosomal membrane protein, and (7) efficient transformation into replicating procyclic insect forms after induction with citrate/cis-aconitate. Our results indicate that the inability of monomorphic T. brucei bloodstream forms to differentiate into short stumpy forms in the host may be due to a failure in the signalling pathway rather than in the differentiation process itself. Treatment of monomorphic bloodstream trypanosomes with pCPTcAMP could be a useful method for identifying the genes involved in the slender-to-stumpy differentiation process.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号