首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2384篇
  免费   221篇
  2023年   7篇
  2022年   6篇
  2021年   45篇
  2020年   37篇
  2019年   45篇
  2018年   45篇
  2017年   35篇
  2016年   62篇
  2015年   118篇
  2014年   139篇
  2013年   164篇
  2012年   212篇
  2011年   280篇
  2010年   154篇
  2009年   100篇
  2008年   154篇
  2007年   167篇
  2006年   139篇
  2005年   111篇
  2004年   120篇
  2003年   80篇
  2002年   73篇
  2001年   26篇
  2000年   23篇
  1999年   35篇
  1998年   19篇
  1997年   10篇
  1996年   13篇
  1995年   12篇
  1994年   8篇
  1993年   9篇
  1992年   10篇
  1991年   13篇
  1990年   9篇
  1988年   4篇
  1987年   5篇
  1986年   8篇
  1985年   4篇
  1984年   5篇
  1983年   8篇
  1982年   13篇
  1980年   5篇
  1979年   7篇
  1974年   3篇
  1973年   6篇
  1971年   7篇
  1970年   3篇
  1969年   3篇
  1966年   4篇
  1956年   3篇
排序方式: 共有2605条查询结果,搜索用时 15 毫秒
71.
Single amplified genomes and genomes assembled from metagenomes have enabled the exploration of uncultured microorganisms at an unprecedented scale. However, both these types of products are plagued by contamination. Since these genomes are now being generated in a high-throughput manner and sequences from them are propagating into public databases to drive novel scientific discoveries, rigorous quality controls and decontamination protocols are urgently needed. Here, we present ProDeGe (Protocol for fully automated Decontamination of Genomes), the first computational protocol for fully automated decontamination of draft genomes. ProDeGe classifies sequences into two classes—clean and contaminant—using a combination of homology and feature-based methodologies. On average, 84% of sequence from the non-target organism is removed from the data set (specificity) and 84% of the sequence from the target organism is retained (sensitivity). The procedure operates successfully at a rate of ~0.30 CPU core hours per megabase of sequence and can be applied to any type of genome sequence.Recent technological advancements have enabled the large-scale sampling of genomes from uncultured microbial taxa, through the high-throughput sequencing of single amplified genomes (SAGs; Rinke et al., 2013; Swan et al., 2013) and assembly and binning of genomes from metagenomes (GMGs; Cuvelier et al., 2010; Sharon and Banfield, 2013). The importance of these products in assessing community structure and function has been established beyond doubt (Kalisky and Quake, 2011). Multiple Displacement Amplification (MDA) and sequencing of single cells has been immensely successful in capturing rare and novel phyla, generating valuable references for phylogenetic anchoring. However, efforts to conduct MDA and sequencing in a high-throughput manner have been heavily impaired by contamination from DNA introduced by the environmental sample, as well as introduced during the MDA or sequencing process (Woyke et al., 2011; Engel et al., 2014; Field et al., 2014). Similarly, metagenome binning and assembly often carries various errors and artifacts depending on the methods used (Nielsen et al., 2014). Even cultured isolate genomes have been shown to lack immunity to contamination with other species (Parks et al., 2014; Mukherjee et al., 2015). As sequencing of these genome product types rapidly increases, contaminant sequences are finding their way into public databases as reference sequences. It is therefore extremely important to define standardized and automated protocols for quality control and decontamination, which would go a long way towards establishing quality standards for all microbial genome product types.Current procedures for decontamination and quality control of genome sequences in single cells and metagenome bins are heavily manual and can consume hours/megabase when performed by expert biologists. Supervised decontamination typically involves homology-based inspection of ribosomal RNA sequences and protein coding genes, as well as visual analysis of k-mer frequency plots and guanine–cytosine content (Clingenpeel, 2015). Manual decontamination is also possible through the software SmashCell (Harrington et al., 2010), which contains a tool for visual identification of contaminants from a self-organizing map and corresponding U-matrix. Another existing software tool, DeconSeq (Schmieder and Edwards, 2011), automatically removes contaminant sequences, however, the contaminant databases are required input. The former lacks automation, whereas the latter requires prior knowledge of contaminants, rendering both applications impractical for high-throughput decontamination.Here, we introduce ProDeGe, the first fully automated computational protocol for decontamination of genomes. ProDeGe uses a combination of homology-based and sequence composition-based approaches to separate contaminant sequences from the target genome draft. It has been pre-calibrated to discard at least 84% of the contaminant sequence, which results in retention of a median 84% of the target sequence. The standalone software is freely available at http://prodege.jgi-psf.org//downloads/src and can be run on any system that has Perl, R (R Core Team, 2014), Prodigal (Hyatt et al., 2010) and NCBI Blast (Camacho et al., 2009) installed. A graphical viewer allowing further exploration of data sets and exporting of contigs accompanies the web application for ProDeGe at http://prodege.jgi-psf.org, which is open to the wider scientific community as a decontamination service (Supplementary Figure S1).The assembly and corresponding NCBI taxonomy of the data set to be decontaminated are required inputs to ProDeGe (Figure 1a). Contigs are annotated with genes following which, eukaryotic contamination is removed based on homology of genes at the nucleotide level using the eukaryotic subset of NCBI''s Nucleotide database as the reference. For detecting prokaryotic contamination, a curated database of reference contigs from the set of high-quality genomes within the Integrated Microbial Genomes (IMG; Markowitz et al., 2014) system is used as the reference. This ensures that errors in public reference databases due to poor quality of sequencing, assembly and annotation do not negatively impact the decontamination process. Contigs determined as belonging to the target organism based on nucleotide level homology to sequences in the above database are defined as ‘Clean'', whereas those aligned to other organisms are defined as ‘Contaminant''. Contigs whose origin cannot be determined based on alignment are classified as ‘Undecided''. Classified clean and contaminated contigs are used to calibrate the separation in the subsequent 5-mer based binning module, which classifies undecided contigs as ‘Clean'' or ‘Contaminant'' using principal components analysis (PCA) of 5-mer frequencies. This parameter can also be specified by the user. When data sets do not have taxonomy deeper than phylum level, or a single confident taxonomic bin cannot be detected using sequence alignment, solely 9-mer based binning is used due to more accurate overall classification. In the absence of a user-defined cutoff, a pre-calibrated cutoff for 80% or more specificity separates the clean contigs from contaminated sequences in the resulting PCA of the 9-mer frequency matrix. Details on ProDeGe''s custom database, evaluation of the performance of the system and exploration of the parameter space to calibrate ProDeGe for a high accurate classification rate are provided in the Supplementary Material.Open in a separate windowFigure 1(a) Schematic overview of the ProDeGe engine. (b) Features of data sets used to validate ProDeGe: SAGs from the Arabidopsis endophyte sequencing project, MDM project, public data sets found in IMG but not sequenced at the JGI, as well as genomes from metagenomes. All the data and results can be found in Supplementary Table S3.The performance of ProDeGe was evaluated using 182 manually screened SAGs (Figure 1b,Supplementary Table S1) from two studies whose data sets are publicly available within the IMG system: genomes of 107 SAGs from an Arabidopsis endophyte sequencing project and 75 SAGs from the Microbial Dark Matter (MDM) project* (only 75/201 SAGs from the MDM project had 1:1 mapping between contigs in the unscreened and the manually screened versions, hence these were used; Rinke et al., 2013). Manual curation of these SAGs demonstrated that the use of ProDeGe prevented 5311 potentially contaminated contigs in these data sets from entering public databases. Figure 2a demonstrates the sensitivity vs specificity plot of ProDeGe results for the above data sets. Most of the data points in Figure 2a cluster in the top right of the box reflecting a median retention of 89% of the clean sequence (sensitivity) and a median rejection of 100% of the sequence of contaminant origin (specificity). In addition, on average, 84% of the bases of a data set are accurately classified. ProDeGe performs best when the target organism has sequenced homologs at the class level or deeper in its high-quality prokaryotic nucleotide reference database. If the target organism''s taxonomy is unknown or not deeper than domain level, or there are few contigs with taxonomic assignments, a target bin cannot be assessed and thus ProDeGe removes contaminant contigs using sequence composition only. The few samples in Figure 2a that demonstrate a higher rate of false positives (lower specificity) and/or reduced sensitivity typically occur when the data set contains few contaminant contigs or ProDeGe incorrectly assumes that the largest bin is the target bin. Some data sets contain a higher proportion of contamination than target sequence and ProDeGe''s performance can suffer under this condition. However, under all other conditions, ProDeGe demonstrates high speed, specificity and sensitivity (Figure 2). In addition, ProDeGe demonstrates better performance in overall classification when nucleotides are considered than when contigs are considered, illustrating that longer contigs are more accurately classified (Supplementary Table S1).Open in a separate windowFigure 2ProDeGe accuracy and performance scatterplots of 182 manually curated single amplified genomes (SAGs), where each symbol represents one SAG data set. (a) Accuracy shown by sensitivity (proportion of bases confirmed ‘Clean'') vs specificity (proportion of bases confirmed ‘Contaminant'') from the Endophyte and Microbial Dark Matter (MDM) data sets. Symbol size reflects input data set size in megabases. Most points cluster in the top right of the plot, showing ProDeGe''s high accuracy. Median and average overall results are shown in Supplementary Table S1. (b) ProDeGe completion time in central processing unit (CPU) core hours for the 182 SAGs. ProDeGe operates successfully at an average rate of 0.30 CPU core hours per megabase of sequence. Principal components analysis (PCA) of a 9-mer frequency matrix costs more computationally than PCA of a 5-mer frequency matrix used with blast-binning. The lack of known taxonomy for the MDM data sets prevents blast-binning, thus showing longer finishing times than the endophyte data sets, which have known taxonomy for use in blast-binning.All SAGs used in the evaluation of ProDeGe were assembled using SPAdes (Bankevich et al., 2012). In-house testing has shown that reads assembled with SPAdes from different strains or even slightly divergent species of the same genera may be combined into the same contig (Personal communications, KT and Robert Bowers). Ideally, the DNA in a well that gets sequenced belongs to a single cell. In the best case, contaminant sequences need to be at least from a different species to be recognized as such by the homology-based screening stage. In the absence of closely related sequenced organisms, contaminant sequences need to be at least from a different genus to be recognized as such by the composition-based screening stage (Supplementary Material). Thus, there is little risk of ProDeGe separating sequences from clonal populations or strains. We have found species- and genus-level contamination in MDA samples to be rare.To evaluate the quality of publicly available uncultured genomes, ProDeGe was used to screen 185 SAGs and 14 GMGs (Figure 1b). Compared with CheckM (Parks et al., 2014), a tool which calculates an estimate of genome sequence contamination using marker genes, ProDeGe generally marks a higher proportion of sequence as ‘Contaminant'' (Supplementary Table S2). This is because ProDeGe has been calibrated to perform at high specificity levels. The command line version of ProDeGe allows users to conduct their own calibration and specify a user-defined distance cutoff. Further, CheckM only outputs the proportion of contamination, but ProDeGe actually labels each contig as ‘Clean'' or ‘Contaminant'' during the process of automated removal.The web application for ProDeGe allows users to export clean and contaminant contigs, examine contig gene calls with their corresponding taxonomies, and discover contig clusters in the first three components of their k-dimensional space. Non-linear approaches for dimensionality reduction of k-mer vectors are gaining popularity (van der Maaten and Hinton, 2008), but we observed no systematic advantage of using t-Distributed Stochastic Neighbor Embedding over PCA (Supplementary Figure S2).ProDeGe is the first step towards establishing a standard for quality control of genomes from both cultured and uncultured microorganisms. It is valuable for preventing the dissemination of contaminated sequence data into public databases, avoiding resulting misleading analyses. The fully automated nature of the pipeline relieves scientists of hours of manual screening, producing reliably clean data sets and enabling the high-throughput screening of data sets for the first time. ProDeGe, therefore, represents a critical component in our toolkit during an era of next-generation DNA sequencing and cultivation-independent microbial genomics.  相似文献   
72.
Phytochemical research of different polarity extracts from green Juglans regia L. pericarps from Greece afforded 32 compounds: four pentacyclic triterpenes (1 – 4), three sesquiterpenes (5 – 7), four tetralones (8 – 11), two naphthoquinones (12 and 13), seven phenolic acids (14 – 20), one diarylheptanoid (21), one neo‐lignan (22), seven flavonoids (23 – 29), two phenylethanoids (30 and 31) and one hydrolysed tannin (32). Compounds 4 and 29 are isolated for the first time from the species, while compounds 3, 7, 20, 22, 23, 24, 25, 26, 28, 30 are reported for the first time in Juglandaceae. Chemotaxonomic significance of isolated compounds into Junglandaceae family is thoroughly discussed.  相似文献   
73.
Mycoplasma suis belongs to the hemotrophic mycoplasmas that are associated with acute and chronic anemia in a wide range of livestock and wild animals. The inability to culture M. suis in vitro has hindered its characterization at the molecular level. Since the publication of M. suis genome sequences in 2011 only one proteome study has been published. Aim of the presented study was to significantly extend the proteome coverage of M. suis strain KI_3806 during acute infection by applying three different protein extraction methods followed by 1D SDS‐PAGE and LC‐MS/MS. A total of 404 of 795 M. suis KI_3806 proteins (50.8%) were identified. Data analysis revealed the expression of 83.7% of the predicted ORFs with assigned functions but also highlights the expression of 179 of 523 (34.2%) hypothetical proteins with unknown functions. Computational analyses identified expressed membrane‐associated hypothetical proteins that might be involved in adhesion or host–pathogen interaction. Furthermore, analyses of the expressed proteins indicated the existence of a hexose‐6‐phosphate‐transporter and an ECF transporter. In conclusion, our proteome study provides a further step toward the elucidation of the unique life cycle of M. suis and the establishment of an in vitro culture. All MS data have been deposited in the ProteomeXchange with identifier PXD002294 ( http://proteomecentral.proteomexchange.org/dataset/PXD002294 ).  相似文献   
74.
A preliminary account of Hypoxylon species (Xylariaceae) from the hitherto widely unexplored “Yungas” mountain forests of Northwest Argentina is presented. Two new species are described based on extensive morphological, molecular (ITS region of rDNA, partial β-tubulin gene) and chemotaxonomic data. Hypoxylon spegazzinianum is close to H. erythrostroma, but differs by larger ascospores and a virgariella-like asexual morph. Hypoxylon calileguense resembles H. subgilvum when growing on wood, but can be distinguished by larger ascospores and a fawn to brick stromatal surface colour. Stromata found on bark have affinities to H. pelliculosum, but differ in their stromatal surface colour and conspicuous amyloid apical apparatus. In addition, nine taxa of Hypoxylon are reported for Argentina for the first time, and some details on their asexual state and stromatal secondary metabolites are reported. An updated dichotomous key for Hypoxylon species from Argentina is provided.  相似文献   
75.
76.

Background

Transmission patterns of sexually-transmitted infections (STIs) could relate to the structure of the underlying sexual contact network, whose features are therefore of interest to clinicians. Conventionally, we represent sexual contacts in a population with a graph, that can reveal the existence of communities. Phylogenetic methods help infer the history of an epidemic and incidentally, may help detecting communities. In particular, phylogenetic analyses of HIV-1 epidemics among men who have sex with men (MSM) have revealed the existence of large transmission clusters, possibly resulting from within-community transmissions. Past studies have explored the association between contact networks and phylogenies, including transmission clusters, producing conflicting conclusions about whether network features significantly affect observed transmission history. As far as we know however, none of them thoroughly investigated the role of communities, defined with respect to the network graph, in the observation of clusters.

Methods

The present study investigates, through simulations, community detection from phylogenies. We simulate a large number of epidemics over both unweighted and weighted, undirected random interconnected-islands networks, with islands corresponding to communities. We use weighting to modulate distance between islands. We translate each epidemic into a phylogeny, that lets us partition our samples of infected subjects into transmission clusters, based on several common definitions from the literature. We measure similarity between subjects’ island membership indices and transmission cluster membership indices with the adjusted Rand index.

Results and Conclusion

Analyses reveal modest mean correspondence between communities in graphs and phylogenetic transmission clusters. We conclude that common methods often have limited success in detecting contact network communities from phylogenies. The rarely-fulfilled requirement that network communities correspond to clades in the phylogeny is their main drawback. Understanding the link between transmission clusters and communities in sexual contact networks could help inform policymaking to curb HIV incidence in MSMs.  相似文献   
77.
Epstein-Barr virus (EBV) infection is a significant factor in the pathogenesis of nasopharyngeal carcinoma, especially in the undifferentiated carcinoma of nasopharyngeal type (UCNT, World Health Organization type III), which is the dominant histopathological type in high-risk areas. The major EBV oncogene is latent membrane protein 1 (LMP1). LMP1 gene shows variability with different tumorigenic and immunogenic potentials. EBV nuclear antigen 1 (EBNA1) regulates progression of EBV-related tumors; however, the influence of EBNA1 sequence variability on tumor pathogenesis is controversial. The aims of this study were to characterize polymorphisms of EBV genes in non-endemic nasopharyngeal carcinoma biopsies and to investigate potential sequence patterns that correlate with the clinical presentation of nasopharyngeal carcinoma. In total, 116 tumor biopsies of undifferentiated carcinoma of nasopharyngeal type (UCNT), collected from 2008 to 2014, were evaluated in this study. The genes EBNA2, LMP1, and EBNA1 were amplified using nested-PCR. EBNA2 genotyping was performed by visualization of PCR products using gel electrophoresis. Investigation of LMP1 and EBNA1 included sequence, phylogenetic, and statistical analyses. The presence of EBV DNA was significantly distributed between TNM stages. LMP1 variability showed six variants, with the detection of the first China1 and North Carolina variants in European nasopharyngeal carcinoma biopsies. Newly discovered variants Srb1 and Srb2 were UCNT-specific LMP1 polymorphisms. The B95-8 and North Carolina variants are possible predictors for favorable TNM stages. In contrast, deletions in LMP1 are possible risk factors for the most disfavorable TNM stage, independent of EBNA2 or EBNA1 variability. A newly discovered EBNA1 subvariant, P-thr-sv-5, could be a potential diagnostic marker, as it represented a UCNT-specific EBNA1 subvariant. A particular combination of EBNA2, LMP1, and EBNA1 polymorphisms, type 1/Med/P-thr was identified as a possible risk factor for TNM stage IVB or progression to the N3 stage.  相似文献   
78.
Propensity scoring (PS) is an established tool to account for measured confounding in non-randomized studies. These methods are sensitive to missing values, which are a common problem in observational data. The combination of multiple imputation of missing values and different propensity scoring techniques is addressed in this work. For a sample of lymph node-positive vulvar cancer patients, we re-analyze associations between the application of radiotherapy and disease-related and non-related survival. Inverse-probability-of-treatment-weighting (IPTW) and PS stratification are applied after multiple imputation by chained equation (MICE). Methodological issues are described in detail. Interpretation of the results and methodological limitations are discussed.  相似文献   
79.

Introduction

Biomarkers indicating trait, progression and prediction of pathology and symptoms in Parkinson''s disease (PD) often lack specificity or reliability. Investigating biomarker variance between individuals and over time and the effect of confounding factors is essential for the evaluation of biomarkers in PD, such as insulin-like growth factor 1 (IGF-1).

Materials and Methods

IGF-1 serum levels were investigated in up to 8 biannual visits in 37 PD patients and 22 healthy controls (HC) in the longitudinal MODEP study. IGF-1 baseline levels and annual changes in IGF-1 were compared between PD patients and HC while accounting for baseline disease duration (19 early stage: ≤3.5 years; 18 moderate stage: >4 years), age, sex, body mass index (BMI) and common medical factors putatively modulating IGF-1. In addition, associations of baseline IGF-1 with annual changes of motor, cognitive and depressive symptoms and medication dose were investigated.

Results

PD patients in moderate (130±26 ng/mL; p = .004), but not early stages (115±19, p>.1), showed significantly increased baseline IGF-1 levels compared with HC (106±24 ng/mL; p = .017). Age had a significant negative correlation with IGF-1 levels in HC (r = -.47, p = .028) and no correlation in PD patients (r = -.06, p>.1). BMI was negatively correlated in the overall group (r = -.28, p = .034). The annual changes in IGF-1 did not differ significantly between groups and were not correlated with disease duration. Baseline IGF-1 levels were not associated with annual changes of clinical parameters.

Discussion

Elevated IGF-1 in serum might differentiate between patients in moderate PD stages and HC. However, the value of serum IGF-1 as a trait-, progression- and prediction marker in PD is limited as IGF-1 showed large inter- and intraindividual variability and may be modulated by several confounders.  相似文献   
80.
IntroductionThe instrumented-Timed-Up-and-Go test (iTUG) provides detailed information about the following movement patterns: sit-to-walk (siwa), straight walking, turning and walk-to-sit (wasi). We were interested in the relative contributions of respective iTUG sub-phases to specific clinical deficits most relevant for daily life in Parkinson’s disease (PD). More specifically, we investigated which condition–fast speed (FS) or convenient speed (CS)–differentiates best between mild- to moderate-stage PD patients and controls, which parameters of the iTUG sub-phases are significantly different between PD patients and controls, and how the iTUG parameters associate with cognitive parameters (with particular focus on cognitive flexibility and working memory) and Health-Related-Quality of Life (HRQoL).MethodsTwenty-eight PD participants (65.1±7.1 years, H&Y stage 1–3, medication OFF state) and 20 controls (66.1±7.5 years) performed an iTUG (DynaPort®, McRoberts BV, The Netherlands) under CS and FS conditions. The PD Questionnaire 39 (PDQ-39) was employed to assess HRQoL. General cognitive and executive functions were assessed using the Montreal Cognitive Assessment and the Trail Making Test.ResultsThe total iTUG duration and sub-phases durations under FS condition differentiated PD patients slightly better from controls, compared to the CS condition. The following sub-phases were responsible for the observed longer total duration PD patients needed to perform the iTUG: siwa, turn and wasi. None of the iTUG parameters correlated relevantly with general cognitive function. Turning duration and wasi maximum flexion velocity correlated strongest with executive function. Walking back duration correlated strongest with HRQoL.DiscussionThis study confirms that mild- to moderate-stage PD patients need more time to perform the iTUG than controls, and adds the following aspects to current literature: FS may be more powerful than CS to delineate subtle movement deficits in mild- to moderate-stage PD patients; correlation levels of intra-individual siwa and wasi parameters may be interesting surrogate markers for the level of automaticity of performed movements; and sub-phases and kinematic parameters of the iTUG may have the potential to reflect executive functioning and HRQoL aspects of PD patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号