首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1824篇
  免费   148篇
  1972篇
  2024年   1篇
  2023年   8篇
  2022年   15篇
  2021年   36篇
  2020年   32篇
  2019年   41篇
  2018年   32篇
  2017年   28篇
  2016年   53篇
  2015年   95篇
  2014年   120篇
  2013年   136篇
  2012年   186篇
  2011年   238篇
  2010年   138篇
  2009年   77篇
  2008年   122篇
  2007年   140篇
  2006年   111篇
  2005年   81篇
  2004年   90篇
  2003年   60篇
  2002年   61篇
  2001年   14篇
  2000年   9篇
  1999年   13篇
  1998年   11篇
  1997年   5篇
  1996年   4篇
  1995年   3篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
排序方式: 共有1972条查询结果,搜索用时 0 毫秒
61.
Plant Molecular Biology - Iron and phosphorus are abundant elements in soils but poorly available for plant nutrition. The availability of these two nutrients represents a major constraint for...  相似文献   
62.
Neurochemical Research - Our group previously reported that 6-h fasting increased both insulin II mRNA expression and insulin level in rat hypothalamus. Given that insulin effects on central...  相似文献   
63.
64.
DEK was originally described as a proto-oncogene protein and is now known to be a major component of metazoan chromatin. DEK is able to modify the structure of DNA by introducing supercoils. In order to find interaction partners and functional domains of DEK, we performed yeast two-hybrid screens and mutational analyses. Two-hybrid screening yielded C-terminal fragments of DEK, suggesting that DEK is able to multimerize. We could localize the domain to amino acids 270 to 350 and show that multimerization is dependent on phosphorylation by CK2 kinase in vitro. We also found two DNA binding domains of DEK, one on a fragment including amino acids 87 to 187 and containing the SAF-box DNA binding motif, which is located between amino acids 149 and 187. This region is sufficient to introduce supercoils into DNA. The second DNA binding domain is located between amino acids 270 and 350 and thus overlaps the multimerization domain. We show that the two DNA-interacting domains differ in their binding properties and in their abilities to respond to CK2 phosphorylation.  相似文献   
65.
66.
67.
The Pseudomonas syringae pv. tomato DC3000 type III secretion system (TTSS) is required for bacterial pathogenicity on plants and elicitation of the hypersensitive response (HR), a programmed cell death (PCD) that occurs on resistant plants. Cosmid pHIR11 enables non-pathogens to elicit an HR dependent upon the TTSS and the effector HopPsyA. We used pHIR11 to determine that effectors HopPtoE, avirulence AvrPphEPto, AvrPpiB1Pto, AvrPtoB, and HopPtoF could suppress a HopPsyA-dependent HR on tobacco and Arabidopsis. Mixed inoculum and Agrobacterium-mediated transient expression experiments confirmed that suppressor action occurred within plant cells. These suppressors, with the exception of AvrPpiB1Pto, inhibited the expression of the tobacco pathogenesis-related (PR) gene PR1a. DC3000 suppressor mutants elicited an enhanced HR consistent with these mutants lacking an HR suppressor. Additionally, HopPtoG was identified as a suppressor on the basis of an enhanced HR produced by a hopPtoG mutant. Remarkably, these proteins functioned to inhibit the ability of the pro-apoptotic protein, Bax to induce PCD in plants and yeast, indicating that these effectors function as anti-PCD proteins in a trans-kingdom manner. The high proportion of effectors that suppress PCD suggests that suppressing plant immunity is one of the primary roles for DC3000 effectors and a central requirement for P. syringae pathogenesis.  相似文献   
68.
Frequently bacteria are exposed to membrane-damaging cationic antimicrobial molecules (CAMs) produced by the host's immune system (defensins, cathelicidins) or by competing microorganisms (bacteriocins). Staphylococcus aureus achieves CAM resistance by modifying anionic phosphatidylglycerol with positively charged L-lysine, resulting in repulsion of the peptides. Inactivation of the novel S. aureus gene, mprF, which is found in many bacterial pathogens, has resulted in the loss of lysylphosphatidylglycerol (L-PG), increased inactivation by CAM-containing neutrophils, and attenuated virulence. We demonstrate here that expression of mprF is sufficient to confer L-PG production in Escherichia coli, which indicates that MprF represents the L-PG synthase. L-PG biosynthesis was studied in vitro and found to be dependent on phosphatidylglycerol and lysyl-tRNA, two putative substrate molecules. Further addition of cadaverin, a competitive inhibitor of the lysyl-tRNA synthetases, or of RNase A abolished L-PG biosynthesis, thereby confirming the involvement of lysyl-tRNA. This study forms the basis for further detailed analyses of L-PG biosynthesis and its role in bacterial infections.  相似文献   
69.
The cluster of microcystin synthetase genes from Anabaena strain 90 was sequenced and characterized. The total size of the region is 55.4 kb, and the genes are organized in three putative operons. The first operon (mcyA-mcyB-mcyC) is transcribed in the opposite direction from the second operon (mcyG-mcyD-mcyJ-mcyE-mcyF-mcyI) and the third operon (mcyH). The genes mcyA, mcyB, and mcyC encode nonribosomal peptide synthetases (NRPS), while mcyD codes for a polyketide synthase (PKS), and mcyG and mcyE are mixed NRPS-PKS genes. The genes mcyJ, mcyF, and mcyI are similar to genes coding for a methyltransferase, an aspartate racemase, and a D-3-phosphoglycerate dehydrogenase, respectively. The region in the first module of mcyB coding for the adenylation domain was found to be 96% identical with the corresponding part of mcyC, suggesting a recent duplication of this fragment and a replacement in mcyB. In Anabaena strain 90, the order of the domains encoded by the genes in the two sets (from mcyG to mcyI and from mcyA to mcyC) is colinear with the hypothetical order of the enzymatic reactions for microcystin biosynthesis. The order of the microcystin synthetase genes in Anabaena strain 90 differs from the arrangement found in two other cyanobacterial species, Microcystis aeruginosa and Planktothrix agardhii. The average sequence match between the microcystin synthetase genes of Anabaena strain 90 and the corresponding genes of the other species is 74%. The identity of the individual proteins varies from 67 to 81%. The genes of microcystin biosynthesis from three major producers of this toxin are now known. This makes it possible to design probes and primers to identify the toxin producers in the environment.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号