首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   48篇
  2022年   1篇
  2021年   4篇
  2019年   1篇
  2017年   2篇
  2016年   3篇
  2015年   8篇
  2014年   2篇
  2013年   6篇
  2012年   15篇
  2011年   7篇
  2010年   6篇
  2009年   6篇
  2008年   8篇
  2007年   5篇
  2006年   9篇
  2005年   6篇
  2004年   8篇
  2003年   4篇
  2002年   2篇
  2001年   9篇
  2000年   4篇
  1999年   7篇
  1998年   3篇
  1997年   1篇
  1996年   6篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   8篇
  1990年   4篇
  1989年   3篇
  1988年   6篇
  1987年   3篇
  1986年   7篇
  1985年   2篇
  1982年   2篇
  1980年   1篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
排序方式: 共有191条查询结果,搜索用时 252 毫秒
31.
32.
33.
34.
Atrial fibrillation (AF) is the most common sustained arrhythmia. Because heat shock proteins (Hsp) can protect cells from stress, we compared the levels of Hsp60, Hsp72, Hsc73, and Hsp27 in atrial myocardium from 17 patients with AF (8 paroxysmal and 9 persistent) and 7 controls in sinus rhythm (SR). Hsp60, Hsp72, and Hsc73 levels were not significantly different among the 3 groups. Hsp27 expression was slightly higher in paroxysmal AF than in SR and in persistent AF, and a borderline significant difference (P = 0.064) was seen between the paroxysmal and persistent AF subgroups. Hsp60 levels in the moderate, severe, and profound myolysis groups were significantly lower than the light myolysis group, but no differences were found in other Hsps. In summary, the data indicate that expression of Hsp27 and Hsc73 may be associated with different stages of AF and that Hsp60 also may be associated with the degree of atrial myolysis.  相似文献   
35.
36.
37.
The impact of transgenic white spruce [Picea glauca (Moench) Voss] containing the endochitinase gene (ech42) on soil fungal biomass and on the ectendomycorrhizal fungi Wilcoxina spp. was tested using a greenhouse trial. The measured level of endochitinase in roots of transgenic white spruce was up to 10 times higher than that in roots of nontransformed white spruce. The level of endochitinase in root exudates of three of four ech42-transformed lines was significantly greater than that in controls. Analysis soil ergosterol showed that the amount of fungal biomass in soil samples from control white spruce was slightly larger than that in soil samples from ech42-transformed white spruce. Nevertheless, the difference was not statistically significant. The rates of mycorrhizal colonization of transformed lines and controls were similar. Sequencing the internal transcribed spacer rRNA region revealed that the root tips were colonized by the ectendomycorrhizal fungi Wilcoxina spp. and the dark septate endophyte Phialocephala fortinii. Colonization of root tips by Wilcoxina spp. was monitored by real-time PCR to quantify the fungus present during the development of ectendomycorrhizal symbiosis in ech42-transformed and control lines. The numbers of Wilcoxina molecules in the transformed lines and the controls were not significantly different (P > 0.05, as determined by analysis of covariance), indicating that in spite of higher levels of endochitinase expression, mycorrhization was not inhibited. Our results indicate that the higher levels of chitinolytic activity in root exudates and root tissues from ech42-transformed lines did not alter the soil fungal biomass or the development of ectendomycorrhizal symbiosis involving Wilcoxina spp.White spruce [Picea glauca (Moench) Voss] is a tree species with an extensive distribution in boreal and subboreal forests and with significant ecological roles (37, 38). It is also an important commercial species for production of pulpwood and construction-grade lumber. However, in nurseries and plantations, white spruce is sensitive to multiple fungal diseases (23, 29, 42, 62, 76). Climate change scenarios suggest that diseases could result in increased mortality in conifer forests (22, 48). Genetic engineering offers a potential means to mitigate biotic and abiotic stresses.During the last 2 decades, chitinase genes isolated from plants, fungi, or bacteria have been studied and used to transform crops or trees in order to increase their resistance to plant-pathogenic fungi. One potential goal is improving white spruce tolerance to fungal infection through insertion of a chitinase gene. Chitin is a biopolymer of β-(1-4)-linked molecules of N-acetylglucosamine (NAG), a derivative of glucose, and is the primary constituent of the fungal cell wall and arthropod exoskeleton (3, 51). Chitinases are plant defense pathogenesis-related proteins (6, 11) that break down the chitin chain either by cleavage of internal glycoside bonds (endochitinases), by hydrolysis of the nonreducing end of the chitin chain (exochitinases), or by hydrolysis of NAG oligomers and trimers into NAG monomers (chitobiases). Endo- and exochitinase genes have been well characterized using sugar beet (Beta vulgaris) (44) and the filamentous fungal genus Trichoderma (14, 24, 69). Chitinolytic genes have been inserted into the genomes of cultivated plants and trees in an attempt to boost plant chitinase activity. Among the different genes involved in the production of chitinolytic enzymes, the ech42 endochitinase gene from Trichoderma harzianum has been inserted into plant genomes to enhance their resistance against phytopathogenic fungi. In McIntosh apple cultivars transformed with the ech42 gene there was limited attack by the apple scab fungus Venturia inaequalis (5). Transgenic black spruce (Picea mariana) expressing the ech42 gene was more resistant to the root rot pathogen Cylindrocladium floridanum (45).However, field deployment of crops and trees genetically transformed to improve nonspecific resistance against phytopathogenic fungi has raised concerns about the impact on nontarget fungi, including potentially beneficial symbionts. This is particularly worrisome when nonspecific constitutive promoters control expression of the resistance gene and the gene is expressed in all tissues from roots to leaves. As a consequence, the natural colonization of such transformed plants by endophytic or mycorrhizal fungi can be altered.Mycorrhizal fungi play a key role in plant nutrition (55) by mobilizing and transferring nutrients to the host through an intimate and highly organized association with plant roots (52, 63). Furthermore, their involvement in soil nutrient recycling (56) makes mycorrhizal symbiosis a major ecological process that is important for the health of soil and forest ecosystems. Crops, fruits, and forest trees exhibit mycorrhizal colonization by arbuscular mycorrhizae, ectomycorrhizae, and ectendomycorrhizae (EEM). While numerous studies have addressed the impact of transgenic plants on arbuscular mycorrhizae (10, 26, 64, 68, 72, 73) and ectomycorrhizae (32, 43, 50, 60), no previous study focused on EEM.Ectendomycorrhizal fungi can be distinguished from ectomycorrhizae by the presence of a thin or fragmented mantle and intracellular penetration into root cortical cells. All EEM fungi identified so far belong to the Ascomycetes, and these fungi are represented by several genera of Helotiales and Pezizales (77). EEM fungi are prevalent in conifer and deciduous tree nurseries (27, 39, 40, 70) and are also very common on seedling root tips at disturbed sites (15, 16, 19). The prevalence of EEM fungi on seedling roots, from which the genus Wilcoxina is frequently recovered (16, 67), suggests that they can play a significant role in establishment and growth of seedlings (77) and provide protection against root diseases (31, 61). Consequently, the potentially negative effects of chitinase-transformed trees on ectendomycorrhizal fungi could be detrimental to plant health.The present study addressed the potential impact of ech42-transformed white spruce on soil fungal biomass and ectendomycorrhizal symbiosis. It was hypothesized that (i) the soil fungal biomass in a transgenic white spruce rhizosphere is less than the soil fungal biomass in a control tree rhizosphere and (ii) the development of Wilcoxina spp. on root tips of transgenic white spruce is less important than the development of Wilcoxina spp. on root tips of control trees. To test these hypotheses, 5-year-old white spruce trees transformed with the 35S promoter-ech42 construct were analyzed by performing a greenhouse trial. The amount of soil fungal biomass was estimated using measurements of ergosterol in soil. A real-time PCR method was developed to detect changes in the quantity of ectendomycorrhizal hyphae involved in colonization of transgenic white spruce root tips.  相似文献   
38.
Ophiostoma species are an economically important group of saprophytic and pathogenic fungi that grow in trees or wood. Ophiostoma like O. piceae and O. floccosum produce melanin, a pigment that stains lumber and logs. We used such species as model organisms for characterizing the molecular mechanisms in fungal melanin production. Because homologous recombination is rare in the Ophiostoma, identifying gene function in this group is challenging. We addressed this by assessing RNA interference (RNAi) as an alternative to gene replacement. For this, we built different inverted repeat transgene (IRT) constructs to down-regulate the polyketide synthase (PKS1) gene of the melanin pathway in O. piceae and O. floccosum. Transformation with IRT-PKS reduced mRNA levels for the PKS1 gene, and consequently decreased pigmentation in transformants. We showed that the PKS1 RNAi efficiency was proportional to the length of the dsRNA expressed from IRT constructs. These results indicated that RNAi is an appropriate tool for functional analysis of genes in Ophiostoma.  相似文献   
39.
Heat shock proteins (Hsps) can be found in two forms, intracellular and extracellular. The intracellular Hsps are induced as a result of stress and have been found to be cytoprotective in many instances due to their chaperone functions in protein folding and in protein degradation. The origin and role of extracellular Hsps is less clear. Although they were suspected originally to be released from damaged cells (necrosis), their presence in most normal individuals rather suggests that they have regulatory functions in circulation. As immunodominant molecules, Hsps can stimulate the immune system, leading to the production of autoantibodies recognizing epitopes shared by microbial and human Hsps. Thus, extracellular Hsps can influence the inflammatory response as evidenced by the production of inflammatory cytokines. Antibodies to Hsps have been found under normal conditions but seem to be increased in certain stresses and diseases. Such antibodies could regulate the inflammatory response positively or negatively. Here, we review the literature on the findings of antibodies to Hsps in situations of environmental or occupational stress and in a number of diseases and discuss their possible significance for the diagnosis, prognosis, or pathogenesis of these diseases.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号