首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2046篇
  免费   166篇
  2023年   14篇
  2022年   15篇
  2021年   56篇
  2020年   39篇
  2019年   51篇
  2018年   39篇
  2017年   53篇
  2016年   66篇
  2015年   99篇
  2014年   125篇
  2013年   159篇
  2012年   201篇
  2011年   193篇
  2010年   103篇
  2009年   91篇
  2008年   117篇
  2007年   133篇
  2006年   131篇
  2005年   106篇
  2004年   99篇
  2003年   76篇
  2002年   72篇
  2001年   19篇
  2000年   11篇
  1999年   16篇
  1998年   33篇
  1997年   17篇
  1996年   5篇
  1995年   9篇
  1994年   4篇
  1993年   9篇
  1992年   11篇
  1991年   4篇
  1990年   4篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1984年   4篇
  1982年   1篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
  1962年   1篇
  1936年   1篇
排序方式: 共有2212条查询结果,搜索用时 15 毫秒
21.
22.
23.
Plant and Soil - Flotation tailings represent an extremely unfriendly substrate for plant colonization due to toxic metal concentrations and marked macronutrient deficiencies. The perennial grass...  相似文献   
24.
25.

Byrsonima Rich. is one of the largest genera of the Malpighiaceae family with 97 species occurrence in Brazil and multiple potentialities, including pharmaceutical and food industries. In this study, 17 microsatellite markers characterized in Byrsonima cydoniifolia were tested for seven related taxa, all species are native to Brazil and four are endemic. Genomic DNA was extracted from leaves tissues and 17 microsatellite markers were used to cross-amplification of microsatellite regions. Polymorphism and genetic diversity were evaluated for B. intermedia, B. verbascifolia, B. laxiflora, B. subterranea, B. umbellata, B. linearifolia. from 16 individuals and for B. viminifolia from 14 individuals. Transferred microsatellite markers panels ranged from 11 (64.8%) in B. viminifolia to 6 (35.2%) in B. umbellata. The total number of alleles per locus ranged from 5 (B. linearifolia) to 8 (B. subterranea) alleles. B. umbellata showed lower values of observed and expected heterozygosity (HO?=?0.312; HE?=?0.436) and B. subterranea presented the highest values (HO?=?0.687; HE?=?0.778). A greater number of microsatellite markers should be developed for B. umbellata. The microsatellite marker panels transferred to the species B. intermedia, B. verbascifolia, B. laxiflora, B. subterranea, B. viminifolia and B. linearifolia are very informative, with a high combined probability of exclusion of paternity (Q?≥?0.976) and the low combined probability of identity (I?≤?9.91?×?10–6), potentially suitable for future genetic-population studies, supporting strategies for maintaining the genetic diversity and for exploration of Byrsonima species as genetic resources.

  相似文献   
26.

Agricultural intensification poses a major threat to the conservation of biodiversity and associated ecosystem services. Since non-crop habitats are regarded as important refuges for farmland biodiversity, various greening measures have been proposed to halt biodiversity loss. However, the effectiveness of these measures for biodiversity conservation is still under debate. Therefore, we here compared ground-dwelling beetle (Coleoptera) assemblages of different non-crop habitats (field margins, set-aside fields sown with wildflowers, and permanent grassland fallows) and wheat fields within an intensively used agricultural landscape in western Germany. Taxonomic diversity of Carabidae, Staphylinidae and other coleopteran families and their conservation value were higher in all non-crop habitats than on wheat fields. Surprisingly, though, different types of non-crop habitats did not differ in species richness or the number of threatened species. Thus, field margins and sown wildflower fields were as effective in promoting beetle diversity as grassland fallows. However, different non-crop habitats supported different species assemblages, and several species, in particular especially large ones, were restricted to grassland fallows. These results suggest that different greening measures are effective in promoting the biodiversity of beetles, and that permanent grassland fallows are essential for nature conservation. The fact that habitat types harbored different assemblages stresses the need to combine a variety of greening measures to yield the highest benefit for biodiversity.

  相似文献   
27.
Wide-range geographically discontinuous distributions have long intrigued scientists. We explore the role of ecology, geology, and dispersal in the formation of these large-scale disjunctions, using the angiosperm tribe Putorieae (Rubiaceae) as a case study. From DNA sequences of nuclear ITS and six plastid markers, we inferred a phylogeny with 65% of all known Putorieae species. Divergence times, ancestral ranges, and diversification rate shifts were then estimated using Bayesian inference. We further explored species climatic tolerances and performed ancestral niche reconstruction to discriminate among alternative speciation modes, including geographical and ecological vicariance, and ecogeographical, ecological, and dispersal-mediated speciation. As a result, we identified seven major clades in Putorieae, some of which exhibit striking geographical disjunctions, matching the Rand Flora pattern, with sister species in the Canary Islands andeastern and southern Africa. Initial diversification within the tribe occurred in the early Miocene, coincident with a period of climate warming; however, most clades diverged within the last 10 Myr. Aridification and high extinction rates, coupled with ecological vicariance, explain the oldest disjunctions. Adaptation to new environmental conditions, after allopatry, is observed in several clades. Dispersal, either long-distance or via corridors made available by mountain uplift, is behind the most recent disjunctions. Some of these events were followed by ecological speciation and rapid diversification, with species becoming adapted to xeric or increasingly colder continental climates. We show that an integrative approach may help discriminate among speciation modes invoked to explain disjunctions at macroevolutionary time scales, even when extinction has erased the signature of past events.  相似文献   
28.
29.
This article describes the enrichment of the fresh-water green microalga Chlorella sorokiniana in selenomethionine (SeMet). The microalga was cultivated in a 2.2 L glass-vessel photobioreactor, in a culture medium supplemented with selenate (SeO42?) concentrations ranging from 5 to 50 mg L?1. Although selenate exposure lowered culture viability, C. sorokiniana grew well at all tested selenate concentrations, however cultures supplemented with 50 mg L?1 selenate did not remain stable at steady state. A suitable selenate concentration in fresh culture medium for continuous operation was determined, which allowed stable long-term cultivation at steady state and maximal SeMet productivity. In order to do that, the effect of dilution rate on biomass productivity, viability and SeMet content of C. sorokiniana at several selenate concentrations were determined in the photobioreactor. A maximal SeMet productivity of 21 μg L?1 day?1 was obtained with 40 mg L?1 selenate in the culture medium. Then a continuous cultivation process at several dilution rates was performed at 40 mg L?1 selenate obtaining a maximum of 246 μg L?1 day?1 SeMet at a low dilution rate of 0.49 day?1, calculated on total daily effluent volume. This paper describes for the first time an efficient long-term continuous cultivation of C. sorokiniana for the production of biomass enriched in the high value amino acid SeMet, at laboratory scale.  相似文献   
30.
Phytoplankton size structure is key for the ecology and biogeochemistry of pelagic ecosystems, but the relationship between cell size and maximum growth rate (μmax) is not yet well understood. We used cultures of 22 species of marine phytoplankton from five phyla, ranging from 0.1 to 106 μm3 in cell volume (Vcell), to determine experimentally the size dependence of growth, metabolic rate, elemental stoichiometry and nutrient uptake. We show that both μmax and carbon‐specific photosynthesis peak at intermediate cell sizes. Maximum nitrogen uptake rate (VmaxN) scales isometrically with Vcell, whereas nitrogen minimum quota scales as Vcell0.84. Large cells thus possess high ability to take up nitrogen, relative to their requirements, and large storage capacity, but their growth is limited by the conversion of nutrients into biomass. Small species show similar volume‐specific VmaxN compared to their larger counterparts, but have higher nitrogen requirements. We suggest that the unimodal size scaling of phytoplankton growth arises from taxon‐independent, size‐related constraints in nutrient uptake, requirement and assimilation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号