首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   692篇
  免费   91篇
  2023年   3篇
  2021年   23篇
  2020年   13篇
  2019年   9篇
  2018年   14篇
  2017年   9篇
  2016年   28篇
  2015年   23篇
  2014年   33篇
  2013年   42篇
  2012年   64篇
  2011年   59篇
  2010年   26篇
  2009年   39篇
  2008年   48篇
  2007年   44篇
  2006年   36篇
  2005年   37篇
  2004年   28篇
  2003年   27篇
  2002年   29篇
  2001年   6篇
  2000年   4篇
  1999年   7篇
  1998年   8篇
  1997年   3篇
  1996年   5篇
  1995年   6篇
  1992年   8篇
  1991年   5篇
  1990年   9篇
  1988年   2篇
  1987年   5篇
  1986年   8篇
  1985年   7篇
  1984年   6篇
  1983年   5篇
  1979年   4篇
  1978年   3篇
  1977年   3篇
  1975年   5篇
  1974年   3篇
  1973年   6篇
  1972年   4篇
  1971年   2篇
  1970年   7篇
  1969年   2篇
  1968年   2篇
  1967年   2篇
  1966年   2篇
排序方式: 共有783条查询结果,搜索用时 0 毫秒
781.
Herbivorous fishes form a keystone component of reef ecosystems, yet the functional mechanisms underlying their feeding performance are poorly understood. In water, gravity is counter-balanced by buoyancy, hence fish are recoiled backwards after every bite they take from the substrate. To overcome this recoil and maintain contact with the algae covered substrate, fish need to generate thrust while feeding. However, the locomotory performance of reef herbivores in the context of feeding has hitherto been ignored. We used a three-dimensional high-speed video system to track mouth and body kinematics during in situ feeding strikes of fishes in the genus Zebrasoma, while synchronously recording the forces exerted on the substrate. These herbivores committed stereotypic and coordinated body and fin movements when feeding off the substrate and these movements determined algal biomass removed. Specifically, the speed of rapidly backing away from the substrate was associated with the magnitude of the pull force and the biomass of algae removed from the substrate per feeding bout. Our new framework for measuring biting performance in situ demonstrates that coordinated movements of the body and fins play a crucial role in herbivore foraging performance and may explain major axes of body and fin shape diversification across reef herbivore guilds.  相似文献   
782.
783.
The EMG pattern in the elbow flexors during the performance of relatively slow (non-ballistic) targeted flexor and extensor movements with different velocities and amplitudes and subsequent fixation of a reached position was studied in healthy humans. Using a servocontrolled mechanostimulator, steady external loading was applied to the arm, which provided performance of the movements and their termination exclusively by the flexor activity, leaving the extensors passive. In all cases, even at very slow movements, EMG activity of the flexors at transition of the joint from one equilibrium state to another was shown to contain a clear dynamic phase followed by a phase of stationary activity. The level of the latter, generated during fixation of a reached position, was practically independent of the amplitude of a movement within the 0–60° range of the joint angles. Thus, the force developed by the flexors at the dynamic EMG phase became fixed when a new equilibrium joint position was reached and did not decrease in the course of a considerable drop in the efferent activity level, when the stationary phase of this activity began. The dynamic EMG phase included two components. The first component was related to leaving the equilibrium state with a certain acceleration, while the second component was probably involved in the velocity control and stoppage of the joint in a new equilibrium position. We suppose that retention of the joint in the equilibrium state is not provided exclusively by formation of a certain equilibrium level of efferent activity (as it is postulated by the equilibrium point hypotheses); it results from some coordinated modifications of the dynamic muscle activity that provide achievement of equilibrium in a certain position within a certain stage of the movement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号