首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1011篇
  免费   62篇
  2023年   4篇
  2022年   4篇
  2021年   24篇
  2020年   17篇
  2019年   22篇
  2018年   30篇
  2017年   21篇
  2016年   28篇
  2015年   45篇
  2014年   47篇
  2013年   55篇
  2012年   83篇
  2011年   82篇
  2010年   38篇
  2009年   40篇
  2008年   72篇
  2007年   79篇
  2006年   50篇
  2005年   45篇
  2004年   53篇
  2003年   54篇
  2002年   50篇
  2001年   15篇
  2000年   9篇
  1999年   12篇
  1998年   14篇
  1997年   6篇
  1996年   3篇
  1995年   7篇
  1994年   5篇
  1992年   4篇
  1991年   9篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   1篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1976年   4篇
  1975年   4篇
  1974年   2篇
  1973年   1篇
  1971年   4篇
  1970年   1篇
  1968年   2篇
  1966年   1篇
排序方式: 共有1073条查询结果,搜索用时 250 毫秒
141.
Cell walls were isolated by sonic disruption of log-phase cells of Clostridium botulinum type A strain 190L and purified by treatment with sodium dodecyl sulfate (SDS) followed by digestion with proteases. Electron microscopy revealed that the cell walls thus obtained were free of both cytoplasmic membrane and cytoplasmic fragments. The purified cell wall contained 8.7% total nitrogen, 15.0% total hexosamines, 22.4% reducing groups, 8.3% carbohydrate, and 3.1% glucose. The content of total phosphorus was very low (0.02%), and therefore it was expected that teichoic acid might be absent in the cell wall. The wall peptidoglycan contained glutamic acid, alanine, diaminopimelic acid, glucosamine and muramic acid in the molar ratios of 1.00:1.85:0:85:1.06:0.67. A low amount of galactosamine was also present, but no other amino acids were found in significant quantities. The SDS-treated cell walls were not attacked by lysozyme, but after extraction with hot formamide they were completely dissolved by the enzyme and released reducing groups. The lysozyme digest was separated into two constituents, the saccharide moiety and the peptide moiety on Sephadex G-50.  相似文献   
142.
143.
The scale-invariant and intermittent dynamics of animal behavior are attracting scientific interest. Recent findings concerning the statistical laws of behavioral organization shared between healthy humans and wild-type mice (WT) and their alterations in human depression patients and circadian clock gene (Period 2; Per2) mutant mice indicate that clock genes play functional roles in intermittent, ultradian locomotor dynamics. They also claim the clinical and biological importance of the laws as objective biobehavioral measures or endophenotypes for psychiatric disorders. In this study, to elucidate the roles of breakdown of the broader circadian regulatory circuit in intermittent behavioral dynamics, we studied the statistical properties and rhythmicity of locomotor activity in Per2 mutants and mice deficient in other clock genes (Bmal1, Clock). We performed wavelet analysis to examine circadian and ultradian rhythms and estimated the cumulative distributions of resting period durations during which locomotor activity levels are continuously lower than a predefined threshold value. The wavelet analysis revealed significant amplification of ultradian rhythms in the BMAL1-deficient mice, and instability in the Per2 mutants. The resting period distributions followed a power-law form in all mice. While the distributions for the BMAL1-deficient and Clock mutant mice were almost identical to those for the WT mice, with no significant differences in their parameter (power-law scaling exponent), only the Per2 mutant mice showed consistently and significantly lower values of the scaling exponent, indicating the increased intermittency in ultradian locomotor dynamics. Furthermore, based on a stochastic priority queuing model, we explained the power-law nature of resting period distributions, as well as its alterations shared with human depressive patients and Per2 mutant mice. Our findings lead to the development of a novel mathematical model for abnormal behaviors in psychiatric disorders.  相似文献   
144.
Legionella pneumophila (L. pneumophila) is a gram-negative bacterium that replicates in a compartment that resembles the host endoplasmic reticulum (ER). To create its replicative niche, L. pneumophila manipulates host membrane traffic and fusion machineries. Bacterial proteins called Legionella effectors are translocated into the host cytosol and play a crucial role in these processes. In an early stage of infection, Legionella subverts ER-derived vesicles (ERDVs) by manipulating GTPase Rab1 to facilitate remodeling of the Legionella-containing vacuole (LCV). Subsequently, the LCV associates with the ER in a mechanism that remains elusive. In this study, we show that L. pneumophila recruits GTPases Rab33B and Rab6A, which regulate vesicle trafficking from the Golgi to the ER, to the LCV to promote the association of LCV with the ER. We found that recruitment of Rab6A to the LCV depends on Rab33B. Legionella effector SidE family proteins, which phosphoribosyl-ubiquitinate Rab33B, were found to be necessary for the recruitment of Rab33B to the LCV. Immunoprecipitation experiments revealed that L. pneumophila facilitates the interaction of Rab6 with ER-resident SNAREs comprising syntaxin 18, p31, and BNIP1, but not tethering factors including NAG, RINT-1, and ZW10, which are normally required for syntaxin 18-mediated fusion of Golgi-derived vesicles with the ER. Our results identified a Rab33B-Rab6A cascade on the LCV and the interaction of Rab6 with ER-resident SNARE proteins for the association of LCV with the ER and disclosed the unidentified physiological role of SidE family proteins.  相似文献   
145.
146.
Abstract

A novel series of neplanocin analogues, 6′-(3-sn-phosphatidyl)neplanocin As bearing a variety of fatty acyl or alkyl residues in the glyceride moiety (2b-2h), were synthesized by means of phospholipase D-catalyzed transphosphatidylation. Among them, 2b, 2c, and 2e each exhibited significant antitumor effect against P388 leukemia in mice, which evidently surpassed that of parent compound neplanocin A.  相似文献   
147.
148.
Abstract

Branched-chain amino acids (BCAAs) exhibit many physiological functions. However, the potential link and mechanism between BCAA and skin function are unknown. We examined the effects of deletion of branched-chain α-keto acid dehydrogenase kinase (BDK), a key enzyme in BCAA catabolism, on type I and III tropocollagen syntheses in mice. Leucine and isoleucine levels were significantly lower in the skin of BDK-KO mice compared with wild-type mice. No changes in valine concentrations were observed. The levels of type I and III tropocollagen proteins and mRNAs (COL1A1 and COL3A1) were significantly lower in the skin of BDK-KO mice compared with wild-type mice. The phosphorylation of p70 S6 kinase, which indicates mammalian target of rapamycin (mTOR) activation, was reduced in the skin of BDK-KO mice compared with wild-type mice. These findings suggest that deficiencies of leucine and isoleucine reduce type I and III tropocollagen syntheses in skin by suppressing the action of mTOR.  相似文献   
149.
1-Kestose is a key prebiotic fructooligosaccharide (FOS) sugar. Some β-fructofuranosidases (FFases) have high transfructosylation activity, which is useful for manufacturing FOS. Therefore, obtaining FFases that produce 1-kestose efficiently is important. Here, we established a rapid FFase evaluation method using Escherichia coli that display different FFases fused to a PgsA anchor protein from Bacillus subtilis. E. coli cell suspensions expressing the PgsA-FFase fusion efficiently produce FOS from sucrose. Using this screening technique, we found that the E. coli transformant expressing Aspergillus kawachii FFase (AkFFase) produced a larger amount of 1-kestose than those expressing FFases from A. oryzae and A. terreus. Saturation mutagenesis of AkFFase was performed, and the mutant G85W was obtained. The E. coli transformant expressing AkFFase G85W markedly increased production of 1-kestose. Our results indicate that the surface display technique using PgsA is useful for screening of FFases, and AkFFase G85W is likely to be suitable for 1-kestose production.

Abbreviations: AkFFase: Aspergillus kawachii FFase; AoFFase: Aspergillus oryzae FFase; AtFFase: Aspergillus terreus FFase; FFase: β-fructofuranosidase; FOS: fructooligosaccharide; fructosylnystose: 1F-β-fructofuranosylnystose  相似文献   

150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号