首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   960篇
  免费   85篇
  1045篇
  2022年   6篇
  2021年   9篇
  2020年   5篇
  2019年   8篇
  2018年   18篇
  2017年   8篇
  2016年   16篇
  2015年   18篇
  2014年   30篇
  2013年   37篇
  2012年   35篇
  2011年   57篇
  2010年   31篇
  2009年   24篇
  2008年   40篇
  2007年   44篇
  2006年   35篇
  2005年   43篇
  2004年   42篇
  2003年   31篇
  2002年   47篇
  2001年   19篇
  2000年   27篇
  1999年   22篇
  1998年   16篇
  1997年   16篇
  1996年   12篇
  1995年   9篇
  1994年   8篇
  1993年   18篇
  1992年   20篇
  1991年   28篇
  1990年   20篇
  1989年   19篇
  1988年   19篇
  1987年   14篇
  1986年   20篇
  1985年   17篇
  1984年   24篇
  1983年   13篇
  1982年   16篇
  1981年   9篇
  1980年   10篇
  1979年   6篇
  1978年   7篇
  1975年   10篇
  1974年   12篇
  1973年   8篇
  1969年   6篇
  1968年   5篇
排序方式: 共有1045条查询结果,搜索用时 15 毫秒
31.
To date, parathyroid hormone is the only clinically available bone anabolic drug. The major difficulty in the development of such drugs is the lack of clarification of the mechanisms regulating osteoblast differentiation and bone formation. Here, we report a peptide (W9) known to abrogate osteoclast differentiation in vivo via blocking receptor activator of nuclear factor-κB ligand (RANKL)-RANK signaling that we surprisingly found exhibits a bone anabolic effect in vivo. Subcutaneous administration of W9 three times/day for 5 days significantly augmented bone mineral density in mouse cortical bone. Histomorphometric analysis showed a decrease in osteoclastogenesis in the distal femoral metaphysis and a significant increase in bone formation in the femoral diaphysis. Our findings suggest that W9 exerts bone anabolic activity. To clarify the mechanisms involved in this activity, we investigated the effects of W9 on osteoblast differentiation/mineralization in MC3T3-E1 (E1) cells. W9 markedly increased alkaline phosphatase (a marker enzyme of osteoblasts) activity and mineralization as shown by alizarin red staining. Gene expression of several osteogenesis-related factors was increased in W9-treated E1 cells. Addition of W9 activated p38 MAPK and Smad1/5/8 in E1 cells, and W9 showed osteogenesis stimulatory activity synergistically with BMP-2 in vitro and ectopic bone formation. Knockdown of RANKL expression in E1 cells reduced the effect of W9. Furthermore, W9 showed a weak effect on RANKL-deficient osteoblasts in alkaline phosphatase assay. Taken together, our findings suggest that this peptide may be useful for the treatment of bone diseases, and W9 achieves its bone anabolic activity through RANKL on osteoblasts accompanied by production of several autocrine factors.  相似文献   
32.
Bacterial binuclear iron monooxygenases play numerous physiological roles in oxidative metabolism. Monooxygenases of this type found in actinomycetes also catalyze various useful reactions and have attracted much attention as oxidation biocatalysts. However, difficulties in expressing these multicomponent monooxygenases in heterologous hosts, particularly in Escherichia coli, have hampered the development of engineered oxidation biocatalysts. Here, we describe a strategy to functionally express the mycobacterial binuclear iron monooxygenase MimABCD in Escherichia coli. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of the mimABCD gene expression in E. coli revealed that the oxygenase components MimA and MimC were insoluble. Furthermore, although the reductase MimB was expressed at a low level in the soluble fraction of E. coli cells, a band corresponding to the coupling protein MimD was not evident. This situation rendered the transformed E. coli cells inactive. We found that the following factors are important for functional expression of MimABCD in E. coli: coexpression of the specific chaperonin MimG, which caused MimA and MimC to be soluble in E. coli cells, and the optimization of the mimD nucleotide sequence, which led to efficient expression of this gene product. These two remedies enabled this multicomponent monooxygenase to be actively expressed in E. coli. The strategy described here should be generally applicable to the E. coli expression of other actinomycetous binuclear iron monooxygenases and related enzymes and will accelerate the development of engineered oxidation biocatalysts for industrial processes.  相似文献   
33.
Highlights? β-catenin nuclear asymmetry after animal-vegetal-oriented cell divisions ? β-catenin nuclear asymmetry drives binary cell fate choices ? Combinatorial codes of nuclear β-catenin activation segregate ascidian germ layers ? Nuclear β-catenin ON-to-OFF activity is required for marginal mesoderm formation  相似文献   
34.
The Arabidopsis mitogen activated protein kinase kinase kinase (MEKK1) plays an important role in stress signaling. However, little is known about the upstream pathways of MEKK1. This report describes the regulation of MEKK1 activity during cold signaling. Immunoprecipitated MEKK1 from cold-treated Arabidopsis seedlings showed elevated kinase activity towards mitogen activated protein kinase kinase2 (MKK2), one of the candidate MEKK1 substrates. To clarify how MEKK1 becomes active in response to cold stress signaling, MEKK1 phosphorylation was monitored by an enzyme extracted from the seedlings grown under cold stress with or without EGTA. MEKK1 was phosphorylated after cold stress, but EGTA inhibited the phosphorylation. MKK2 was also phosphorylated by the same extract, but only when EGTA was absent. These results suggested that Ca2+ signaling occurred upstream of the MEKK1–MKK2 pathway. Full-length MEKK1 showed almost no activity but MEKK1 without the N-terminal region (MEKK1 KD) that retained the kinase domain had a strong ability to phosphorylate MKK2, demonstrating the inhibitory role of the N-terminal region of MEKK1. In addition, MEKK1 was phosphorylated by calcium/calmodulin-regulated receptor-like kinase (CRLK1), which suggested that CRLK1 is one of candidates located upstream of MEKK1.  相似文献   
35.
36.
Abstract: The possible roles of oxalic acid, veratryl alcohol, and manganese were investigated in relation to lignin biodegradation by white-rot basidiomycetes. Oxalate inhibited both lignin peroxidase (LiP) and manganese-peroxidase (MnP). and was decarboxylated by the mediation of veratryl alcohol and Mn. Oxalate was shown to regulate the mineralization of lignin in the in vivo system of Phanerochaete chrysosporium . In the brown-rot wood decay process, oxalic acid may serve as an acid catalyst as well as an electron donor for the Fenton reaction, to breakdown cellulose and hemicellulose. Oxaloacetase and glyoxylate oxidase may play a key role in production of oxalic acid by white-rot and brown-rot basidiomycetes such as Phanerochaete chrysosporium, Coriolus versicolor and Tyromyces palustris . A possible role of oxalate metabolism is discussed in relation to the physiology of wood-rotting fungi.  相似文献   
37.
Retrograde transport of lysosomes is recognised as a critical autophagy regulator. Here, we found that acrolein, an aldehyde that is significantly elevated in Parkinson''s disease patient serum, enhances autophagy by promoting lysosomal clustering around the microtubule organising centre via a newly identified JIP4‐TRPML1‐ALG2 pathway. Phosphorylation of JIP4 at T217 by CaMK2G in response to Ca2+ fluxes tightly regulated this system. Increased vulnerability of JIP4 KO cells to acrolein indicated that lysosomal clustering and subsequent autophagy activation served as defence mechanisms against cytotoxicity of acrolein itself. Furthermore, the JIP4‐TRPML1‐ALG2 pathway was also activated by H2O2, indicating that this system acts as a broad mechanism of the oxidative stress response. Conversely, starvation‐induced lysosomal retrograde transport involved both the TMEM55B‐JIP4 and TRPML1‐ALG2 pathways in the absence of the JIP4 phosphorylation. Therefore, the phosphorylation status of JIP4 acts as a switch that controls the signalling pathways of lysosoma l distribution depending on the type of autophagy‐inducing signal.  相似文献   
38.
Gregarious settlement is essential for reproduction and survival of many barnacles. A glycoprotein, settlement-inducing protein complex (SIPC) has been recognized as a signal for settlement and it is expressed in both conspecific adults and larvae. Although the settlement-inducing activities of SIPC are species-specific, the molecular-based mechanism by which larvae distinguish conspecific SIPC from the SIPC of other species is still unknown. Here, the complete primary structure of the SIPC of Megabalanus coccopoma, as well as the partial structure of the SIPCs of Balanus improvisus, Megabalanus rosa, and Elminius modestus are reported. These SIPCs contain highly variable regions that possibly modulate the affinity for the receptor, resulting in the species specificity of SIPC. In addition, the distribution patterns of potential N-glycosylation sites were seen to be different among the various species. Differences in such post-translational modifications may contribute to the species specificity of SIPC.  相似文献   
39.
40.
Caffeic acid is a biologically active molecule that has various beneficial properties, including antioxidant, anticancer, and anti-inflammatory activities. In this study, we explored the catalytic potential of a bacterial cytochrome P450, CYP199A2, for the biotechnological production of caffeic acid. When the CYP199A2 enzyme was reacted with p-coumaric acid, it stoichiometrically produced caffeic acid. The crystal structure of CYP199A2 shows that Phe at position 185 is situated directly above, and only 6.35 Å from, the heme iron. This F185 residue was replaced with hydrophobic or hydroxylated amino acids using site-directed mutagenesis to create mutants with novel and improved catalytic properties. In whole-cell assays with the known substrate of CYP199A2, 2-naphthoic acid, only the wild-type enzyme hydroxylated 2-naphthoic acid at the C-7 and C-8 positions, whereas all of the active F185 mutants exhibited a preference for C-5 hydroxylation. Interestingly, several F185 mutants (F185V, F185L, F185I, F185G, and F185A mutants) also acquired the ability to hydroxylate cinnamic acid, which was not hydroxylated by the wild-type enzyme. These results demonstrate that F185 is an important residue that controls the regioselectivity and the substrate specificity of CYP199A2. Furthermore, Escherichia coli cells expressing the F185L mutant exhibited 5.5 times higher hydroxylation activity for p-coumaric acid than those expressing the wild-type enzyme. By using the F185L whole-cell catalyst, the production of caffeic acid reached 15 mM (2.8 g/liter), which is the highest level so far attained in biotechnological production of this compound.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号