首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5708篇
  免费   405篇
  2022年   22篇
  2021年   57篇
  2020年   35篇
  2019年   52篇
  2018年   61篇
  2017年   66篇
  2016年   97篇
  2015年   162篇
  2014年   174篇
  2013年   280篇
  2012年   321篇
  2011年   302篇
  2010年   221篇
  2009年   210篇
  2008年   333篇
  2007年   360篇
  2006年   345篇
  2005年   325篇
  2004年   346篇
  2003年   344篇
  2002年   333篇
  2001年   158篇
  2000年   159篇
  1999年   135篇
  1998年   63篇
  1997年   48篇
  1996年   58篇
  1995年   58篇
  1994年   67篇
  1993年   50篇
  1992年   75篇
  1991年   78篇
  1990年   55篇
  1989年   51篇
  1988年   56篇
  1987年   54篇
  1986年   58篇
  1985年   44篇
  1984年   33篇
  1983年   39篇
  1982年   32篇
  1981年   20篇
  1980年   25篇
  1979年   28篇
  1978年   20篇
  1977年   19篇
  1975年   23篇
  1972年   16篇
  1971年   16篇
  1969年   23篇
排序方式: 共有6113条查询结果,搜索用时 15 毫秒
991.
992.
Oxidative stress has been suggested to be involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer disease (AD) and Parkinson disease (PD). Heme oxygenase-1 (HO-1), a key enzyme in heme catabolism, also functions as an antioxidant enzyme. Here, we show that a (GT)n repeat in the human HO-1 gene promoter region is highly polymorphic, although no particular alleles are associated with AD or PD. This newly identified genetic marker should allow us to study the possible involvement of HO-1 in certain human diseases. Received: 5 November 1996 / Accepted: 18 February 1997  相似文献   
993.
Development of the central somatosensory system is profoundly modulated by the sensory periphery. Cauterization of facial whiskers alters the segregation pattern of barrels in rodents only during a few days just after birth (critical period). Although a molecular basis of the segregation of barrel neurons and the critical period for the anatomical plasticity observed in layer IV barrel neuron is not clear yet, the accumulating evidence suggests that neurotrophins modulate synaptic connections including central nervous system. In this study, we showed by in situ hybridization that mouse barrel side neurons express brain-derived neurotrophic factor (BDNF) mRNA and both catalytic and non-catalytic forms of trkB mRNA. Cautery of row C vibrissae on the right side of the face within 24 h after birth (post natal day 0, PND0) reduced the expression of BDNF and trkB mRNA from the division region between the contralateral row C barrels at PND7. The vibrissae in row A, C, and E were cauterized at PND0 followed by quantitative RT-PCR for BDNF and trkB mRNA with total RNA isolated from the barrel region at PND7. The result showed that BDNF, but not trkB, mRNA was increased several-fold in the contralateral barrel region. These data suggest that the expression of BDNF mRNA is differentially regulated between injured barrels and actively innervated barrels. The differential expression of the mRNA encoding neurotrophins and their receptors may be important in regulating the injury-dependent re-segregation of barrels.  相似文献   
994.
We present highly sensitive aluminum detection method in root using fluorescent lumogallion. Roots treated with 100 μM AlCl3 including 0.2 mM CaCl2 (pH 4.5) were stained for 60 min with 10 μM lumogallion fluorescence solution and fluorescence from aluminum complex in root was observed under confocal laser microscope. There was a good correlation between the intensity of fluorescence and aluminum content. When the amount of aluminum lost during each step in staining process was measured, it was found that about 10% of aluminum was lost only at staining stage. Through lumogallion staining method, aluminum accumulation especially at an early stage of aluminum treatment in root was shown. At the beginning (2 hr), aluminum began to be accumulated in root cap. After 4 hr treatment, the aluminum distribution was spread to about 3 mm from root apex in the root cap and outer cortex. When aluminum was found in the outer cortex in 3–5 mm from the root apex, the viability was tended to be decreased in the same area (6 hr). At the same time, aluminum amount in meristem was increased. However the comparison of lumogallion staining method with that of morin, which has been widely used to detect aluminum in root, the sensitivity of lumogallion method was found to be much higher.  相似文献   
995.
Synechococcus PCC 7942 contains two fructose-1,6-bisphosphataseisozymes (FBPase-I and FBPase-II), while Synechocystis PCC 6803has only one (FBPase-I) in spite of the occurrence of two FBPaseisozyme genes [Tamoi et al. (1998) Biochim. Biophys. Acta 1383:232]. We now demonstrate that disruption of the gene encodingFBPase-II (fbp-II) with a kanamycin resistance gene cartridgedoes not affect cell growth, Chl content, or CO2 assimilationin Synechococcus PCC 7942, and disruption of the gene encodingFBPase-I (fbp-I) is a lethal mutation in both cyanobacteria.Accordingly, it is clear that FBPase-I is necessary to sustainphotosynthesis and gluconeogenesis in cyanobacteria. (Received September 10, 1998; Accepted December 10, 1998)  相似文献   
996.
The development of the mammalian antero-posterior (A-P) axis is proposed to be established by distinct anterior and posterior signaling centers, anterior visceral endoderm and primitive streak, respectively. Knock-out studies in mice have shown that Otx2 and Cripto have crucial roles in the generation and/or functions of these anterior and posterior centers, respectively. In both Otx2 and Cripto single mutants, the initial formation of the A-P axis takes place in a proximal-distal (P-D) orientation, but subsequent axis rotation fails to occur. To examine the developmental consequences of the lack of these two genes, we have analyzed the Otx2(-/-);Cripto(-/-) double homozygous mutant phenotype. In the double mutants, the expression of the A-P axis markers Cer-l, Lim1, and Wnt3 was not induced, while expression of Fgf8 and T was expanded throughout the epiblast, indicating that the double mutants could not form the A-P axis even in its initial P-D orientation. In addition, the double mutants displayed defects in differentiation of the visceral endoderm overlying the epiblast, as well as in the extraembryonic ectoderm. Furthermore, differentiation of neuroectoderm was accelerated as judged by the reduction of Oct4 expression and emergence of Sox1 and Gbx2 expression in the double mutant epiblast. The resulting ectoderm only displayed characteristics of anterior hindbrain, implicating it as a ground state in the mammalian body plan. Our results indicate that complementary functions of Otx2 and Cripto are essential for initial patterning of the A-P axis in the mouse embryo.  相似文献   
997.
998.
Abstract  Mitochondria play a central role to provide ATP for fertilization and preimplantation embryo development in the ooplasm. The mitochondrial dysfunction of oocyte has been proposed as one of the causes of high levels of developmental retardation and arrest that occur in preimplantation embryos generated using Assisted Reproductive Technology. Cytoplasmic transfer (CT) from a donor to a recipient oocyte has been applied to infertility due to dysfunctional ooplasm, with resulting pregnancies and births. However, neither the efficacy nor safety of this procedure has been appropriately investigated. In order to improve embryogenesis, we observed the mitochondrial distribution in ooplasma under the several conditions using mitochondrial GFP-transgenic mice (mtGFP-tg mice) in which the mitochondria are visualized by GFP. In this report, we will present our research about the mitochondrial distribution in ooplasm during early embryogenesis and the fate of injected donor mitochondria after CT using mtGFP-tg mice. The mitochondria in ooplasm from the germinal vesicle stage to the morula stage were accumulated in the perinuclear region. The mitochondria of the mtGFP-tg mouse oocyte transferred into the wild type mouse embryo could be observed until the blastocysts stage, suggesting that the mtGFP-tg mice oocyte is very useful for visual observation of the mitochondrial distribution in the oocyte, and that the aberrant early developmental competences due to the oocyte mitochondrial dysfunction may be overcome by transferring the "normal" mitochondria.  相似文献   
999.
Minipigs have been studied as a model of osteoporosis. However, little information is available regarding their bone physiology. We established standardized bone data and investigated the relationship between bone growth and bone metabolism in female minipigs. Blood and urine samples were obtained from 53 female G?ttingen minipigs, 3-76 months of age, for measurement of bone biomarkers (i.e., BAP, OC, NTX, and DPD). The lumbar vertebra and femur were excised to determine the growth plate condition, bone length, bone mineral content (BMC), and bone mineral density (BMD). High levels of bone biomarkers were observed during the initial period after birth, decreasing thereafter with age. Bone biomarkers were confirmed to be highly correlated with age (R(2) > 0.7). The growth plates of the lumbar vertebra and the femur began to close at 21 and 25 months of age, respectively, and closed completely at 42 months of age. Bone length increased rapidly before growth plate closure, and reached a peak at 21 and 28 months of age in the lumbar vertebra and the femur, respectively. The levels of BMC and BMD increased rapidly before growth plate closure, and continued to increase slowly until 76 months of age. A high negative correlation (-0.855 < r < -0.711, p<0.001) was confirmed between the bone biomarkers and the bone measurement data. These results indicate that the bone turnover velocity is consistent with the bone growth velocity in female G?ttingen minipigs.  相似文献   
1000.
The purpose of the present study was to clarify the differences in the alterations of cellular activities of osteoblasts and osteoclasts, mineralization, and bone mass in cortical and cancellous bones of young growing rats with mild calcium deficiency. Twenty female Sprague-Dawley rats, 6 weeks of age, were randomized by the stratified method into two groups with 10 rats in each group: 0.5% (normal) calcium diet group and 0.1% (low) calcium diet group. After 10 weeks of feeding, bone histomorphometric analysis was performed on cancellous bone of the proximal tibia as well as cortical bone of the tibial shaft. Calcium deficiency increased eroded surface (ES/bone surface [BS]) and the number of osteoclast (N.Oc/BS) with an increase in osteoblast surface (ObS/BS), but decreased bone formation rate (BFR/BS) in cancellous bone. However, cancellous bone volume was preserved, while cortical bone area was decreased as a result of decreased periosteal bone gain and enlargement of the marrow cavity. These results suggest that short-term mild calcium deficiency in young growing female rats increased bone resorption by increasing osteoclastic recruitment, and suppressed mineralization followed by increased osteoblastic recruitment in cancellous bone, but cancellous bone loss was counteracted through redistribution of calcium from cortical bone to cancellous bone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号