首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2881篇
  免费   116篇
  国内免费   2篇
  2023年   6篇
  2022年   6篇
  2021年   45篇
  2020年   27篇
  2019年   35篇
  2018年   58篇
  2017年   46篇
  2016年   49篇
  2015年   121篇
  2014年   132篇
  2013年   225篇
  2012年   199篇
  2011年   232篇
  2010年   114篇
  2009年   126篇
  2008年   189篇
  2007年   179篇
  2006年   149篇
  2005年   179篇
  2004年   186篇
  2003年   162篇
  2002年   142篇
  2001年   18篇
  2000年   16篇
  1999年   24篇
  1998年   44篇
  1997年   38篇
  1996年   22篇
  1995年   22篇
  1994年   21篇
  1993年   17篇
  1992年   19篇
  1991年   15篇
  1990年   14篇
  1989年   17篇
  1988年   5篇
  1987年   19篇
  1986年   5篇
  1985年   6篇
  1984年   13篇
  1983年   8篇
  1982年   6篇
  1981年   9篇
  1980年   7篇
  1979年   3篇
  1977年   6篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
排序方式: 共有2999条查询结果,搜索用时 15 毫秒
11.
In order to understand the control mechanisms of a large, stable bacterial standing stock, enclosure experiments were conducted in a eutrophic lake, where both bacterial productivity and grazing pressure were very high. Total bacterial number in the different enclosures ranged from 1.2 to 2.7×107 cells mL−1 throughout the experiment. The average bacterial cell production rate estimated from a grazer eliminating experiment was 6.3×105 cells mL−1 h−1. Difference in the bacterial cell production rate between shaded and unshaded enclosures was not apparent. Bacteria showed a reduction in standing stock of only about 25–30% even after the supply of light was cut to 1%. Bacteria in the shaded enclosures then recovered their production rate in the first 12 days of perturbation. Grazing pressure in the shaded enclosures was not less than that for the control. Thus, it was considered a control mechanism of bacterial stable standing stock that the bacteria shifted their organic substrate from extracellular dissolved organic carbon freshly released from phytoplankton to that already stocked in the water column, though it is not known whether the dominant bacteria were the same.  相似文献   
12.
We developed a three-dimensional (3-D) clinostat to simulate a microgravity environment and studied the changes in plant growth processes under this condition. The rate of germination of cress (Lepidium sativum), maize (Zea mays), rice (Oryza sativa), pea (Pisum sativum), or azuki bean (Vigna angularis) was not affected on the clinostat. The clinostat rotation did not influence the growth rate of their roots or shoots, except for a slight promotion of growth in azuki roots and epicotyls. On the contrary, the direction of growth of plant organs clearly changed on the 3-D clinostat. On the surface of the earth, roots grow downward while shoots upward in parallel to the gravity vector. On the 3-D clinostat, roots of cress elongated along the direction of the tip of root primordia after having changed the direction continuously. Rice roots also grew parallel to the direction of the tip of root primordia. On the other hand, roots of maize, pea, and azuki bean grew in a random fashion. The direction of growth of shoots was more controlled even on the 3-D clinostat. In a front view of embryos, shoots grew mostly along the direction of the tip of primordia. In a side view, rice coleoptiles showed an adaxial (toward the caryopsis) while coleoptiles of maize and epicotyls of pea and azuki bean an abaxial curvature. The curvature of shoots became larger with their growth. Such an autotropism may have an important role in regulation of life cycle of higher plants under a microgravity environment.  相似文献   
13.
Rice ( Oryza sativa L. cv. Sasanishiki) coleoptiles grown under water achieved greater length than those grown either in air or under water with constant air bubbling. The extensibility of cell walls in coleoptiles grown under water was larger than that in the other treatments. Per unit length of the coleoptile, the content of ferulic and diferulic acids ester-linked to hemicelluloses was higher in air and bubbling type coleoptiles than in water type ones. The extensibility of the coleoptile cell walls correlated with the content of diferulic acids per unit length and per hemicellulose, suggesting that the enhancement of the formation of diferulic acid bridges in hemicelluloses in air or under water with air bubbling makes the cell walls mechanically rigid; thereby inhibiting cell elongation in rice coleoptiles. In addition, the ratio of diferulic acid to ferulic acid was almost constant irrespective of coleoptile age, zone and growth conditions, suggesting that the feruloylation of hemicelluloses is rate-limiting in the formation of diferulic acid bridges in the cell walls of rice coleoptiles.  相似文献   
14.
Auxin-induced elongation of epicotyl segments of azuki bean ( Vigna angularis Ohwi and Ohashi cv. Takara) was suppressed by fucose-binding lectins from Tetragonolobus purpureus Moench and Ulex europaeus L. These lectins also inhibited auxin-induced cell wall loosening (decrease in the minimum stress-relaxation time of the cell walls) of segments. Auxin caused a decrease in molecular mass of xyloglucans extracted with 24% KOH from the cell walls. The lectins inhibited auxin-induced changes in molecular mass of the xyloglucans. The autolytic release of xylose-containing products from the pectinase-treated cell walls was also suppressed by the lectins. Fucose-binding lectins pretreated with fucose exhibited little or no inhibitory effect on auxin-induced elongation, cell wall loosning, or breakdown of xyloglucans. These results support the view that the breakdown of xyloglucans is involved in the cell wall loosening responsible for auxin-induced elongation in dicotyledons.  相似文献   
15.
When leaves of Vicia faba were treated with H2O2 or visiblelight in the presence of methyl viologen (MV), the orange-redcompound dopachrome was formed transiently and melanin was accumulated.With the darkening of leaves, the level of 3,4-dihydroxyphenylalanine(DOPA) decreased and then recovered to the original level uponaddition of 1 mM H2O2. However, if leaves were incubated inthe presence of 10 mM H2O2, the level of DOPA decreased againafter the increase. The time course of the changes in levelsof DOPA observed during the accumulation of melanin as a resultof illumination in the presence of MV was very similar to thatobserved after the addition of 10 mM H2O2. Illumination of leavesin the absence of MV did not result in any accumulation of melanin,but the level of DOPA changed slightly. When isolated mesophyllcells were incubated in the dark, the level of DOPA decreased.Illumination of the cells stimulated this decrease. Tropolone,an inhibitor of phenol oxidase, did not inhibit and actuallystimulated the H2O2- and light-induced oxidation of DOPA andaccumulation of melanin in leaves. Tropolone also stimulatedthe decrease in the levels of DOPA both in the dark and in thelight in isolated mesophyll cells. These data suggest that aperoxidase-H2O2 system, and not phenol oxidase, participatesin the oxidation of DOPA. When DOPA was oxidized by a basicperoxidase isolated from V.faba leaves, an intermediate, whichwas perhaps dopaquinone and which was reducible by ascorbate,was formed. Based on the data, a discussion is presented ofthe physiological significance of the oxidation of DOPA by peroxidasein vacuoles. (Received March 4, 1991; Accepted May 21, 1991)  相似文献   
16.
Xyloglucan nonasaccharide (XG9) is recognized as an inhibitorof 2,4-D-induced long-term growth of segments of pea stems.In the presence of 10–5 M 2,4-D, inhibition by 10–9M XG9 of elongation of third internode segments of pea seedlingswas detected within 2 h after the start of incubation, in someexperiments. Analysis by double-reciprocal (Lineweaver-Burk)plots of elongation in the presence of various concentrationsof 2,4-D, with or without XG9, gave parallel lines, indicatingthat XG9 inhibited 2,4-D-induced elongation in an uncompetitivemanner. XG9 did not influence the 2,4-D-induced cell wall loosening.Thus, XG9 does not fulfill the proposed definition of an "antiauxin". XG9 at 10–11 to 10–6 M did not influence IAA-inducedelongation of segments from pea third internodes, azuki beanepicotyls, cucumber hypocotyls, or oat coleoptiles. Inhibitionof IAA-induced elongation by XG9 was not observed even whenthe segments from pea or azuki bean were abraded. Furthermore,fucosyl-lactose at 10–11 to 10–4 M did not affectthe IAA-induced elongation of segments of pea internodes orof azuki bean epicotyls. XG9 may be incapable of inhibitingthe IAA-induced cell elongation (especially in oat) or, alternatively,the endogenous levels of XG9 may be so high that exogenouslyapplied XG9 has no inhibitory effect on IAA-induced elongation. (Received February 28, 1991; Accepted May 25, 1991)  相似文献   
17.
The absolute configuration at C-12 of pittosporatobiraside A and B isolated from the leaves of Pittosporum tobira was determined to be S on the basis of the exciton chirality of their dibenzoate derivative. The structures of the two glycosides were thus established to be (1S,9S,10S,11S,12S,14R,16R)-12-[(Z)-2-methyl-1-oxo-2-butenyl]-6,14-dimethyl-2-methylene-9-(1-methylethyl)-15,17-dioxatricyclo[8.7.0.011,16]heptadec-5-en-13-one and (1S,9S,10S,11S,12S,14R,16R)-12-(3-methyl-1-oxo-2-butenyl)-6,14-dimethyl-2-methylene-9-(1-methylethyl)-15,17-dioxatricyclo [8.7.0.011,16]heptadec-5-en-13-one, respectively.  相似文献   
18.
N-Acetylglucosamine-containing glycopeptides were released fromthe cell walls of rice coleoptiles by treatment with subtilisin.They were purified by successive treatments with different typesof proteases and by affinity chromatography using wheat germlectin- and concanavalin A-Sepharose columns. The glycopeptidefinally obtained after gel filtration contained glycine as theN-terminal amino acid and asparagine as the only amino acidcapable of linking with the sugar residue. This glycopeptidecontained only N-acetylglucosamine and mannose as sugars andcould be hydrolyzed by -mannosidase and by almond glycopeptidase.It seems to have an oligosaccharide structure, consisting of and ß-mannose and chitobiose attached to asparagine.The results indicate that this wall glycopeptide is a componentof asparagine-linked glycoprotein. 3Present address: Department of Biology, Faculty of Science,Osaka City University, Sumiyoshi-ku, Osaka 558, Japan. (Received May 22, 1985; Accepted December 10, 1985)  相似文献   
19.
20.
Summary Analysis of lactate and malate dehydrogenase zymograms of rodent salivary glands showed species and organ specific patterns.Lactate dehydrogenase isoenzyme patterns occupied the middle positions in relation to those of skeletal and heart muscle. Activities of the major salivary glands were in the order submaxillary gland>parotid>sublingual gland. Zymogram of the mouse and rat showed LDH4 and LDH5 high activity patterns, while that of the rabbit was the fast moving active one. Hamster salivary gland exhibited a neutral type of the former and the latter.Malate dehydrogenase isoenzyme exhibited very similar patterns for the mouse, rat and hamster. Malate dehydrogenase zymogram of rabbit showed 3 active bands, which was different from the other rodents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号