首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12255篇
  免费   648篇
  国内免费   3篇
  2022年   18篇
  2021年   126篇
  2020年   81篇
  2019年   113篇
  2018年   156篇
  2017年   145篇
  2016年   241篇
  2015年   376篇
  2014年   445篇
  2013年   898篇
  2012年   806篇
  2011年   816篇
  2010年   539篇
  2009年   496篇
  2008年   817篇
  2007年   864篇
  2006年   773篇
  2005年   812篇
  2004年   795篇
  2003年   732篇
  2002年   692篇
  2001年   105篇
  2000年   91篇
  1999年   162篇
  1998年   182篇
  1997年   120篇
  1996年   118篇
  1995年   97篇
  1994年   98篇
  1993年   99篇
  1992年   105篇
  1991年   72篇
  1990年   68篇
  1989年   70篇
  1988年   44篇
  1987年   58篇
  1986年   55篇
  1985年   48篇
  1984年   56篇
  1983年   47篇
  1982年   64篇
  1981年   51篇
  1980年   58篇
  1979年   23篇
  1978年   28篇
  1977年   32篇
  1976年   32篇
  1975年   34篇
  1973年   25篇
  1970年   20篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
991.
Although overexpression of cyclin A2 is reportedly an indicator of a poor prognosis of various malignancies including endometrial carcinoma, its molecular mechanism remains undetermined. To address this issue, we examined the effect of cyclin A2 on the development of resistance to chemotherapeutic drugs. The expression of cyclin A2 protein was increased in advanced‐stage and chemotherapy‐refractory stage endometrial carcinomas compared with that in early‐stage tumours. The expression levels of cyclin A2 in endometrial carcinoma cell lines correlated positively with the IC50 for cisplatin. Endometrial carcinoma HHUA cells that overexpressed cyclin A2 showed increased resistance to cisplatin in vitro and in vivo, via the activation of a survival pathway, the inositol‐3 phosphate kinase (PI3K) cascade. The use of a cDNA microarray identified an Akt‐binding protein, periplakin, as a novel target of cyclin A2. The cyclin A2‐induced up‐regulation of periplakin was mediated via direct binding of Sp1 to the promoter that was activated by cyclin A2 along with chromatin remodelling involving CBP/p300, and the siRNA‐mediated silencing of periplakin suppressed the PI3K pathway. These results indicate cyclin A2 to be involved in the acquisition of aggressive behaviour of tumour cells through the activation of PI3K by cyclin A2‐induced periplakin, and to be a promising therapeutic target.  相似文献   
992.
To establish a strategy for the comprehensive identification of human N‐myristoylated proteins, the susceptibility of human cDNA clones to protein N‐myristoylation was evaluated by metabolic labeling and MS analyses of proteins expressed in an insect cell‐free protein synthesis system. One‐hundred‐and‐forty‐one cDNA clones with N‐terminal Met‐Gly motifs were selected as potential candidates from ~2000 Kazusa ORFeome project human cDNA clones, and their susceptibility to protein N‐myristoylation was evaluated using fusion proteins, in which the N‐terminal ten amino acid residues were fused to an epitope‐tagged model protein. As a result, the products of 29 out of 141 cDNA clones were found to be effectively N‐myristoylated. The metabolic labeling experiments both in an insect cell‐free protein synthesis system and in the transfected COS‐1 cells using full‐length cDNA revealed that 27 out of 29 proteins were in fact N‐myristoylated. Database searches with these 27 cDNA clones revealed that 18 out of 27 proteins are novel N‐myristoylated proteins that have not been reported previously to be N‐myristoylated, indicating that this strategy is useful for the comprehensive identification of human N‐myristoylated proteins from human cDNA resources.  相似文献   
993.
Reproductive isolation plays an important role in speciation as it restricts gene flow and accelerates genetic divergence between formerly interbreeding population. In rice, hybrid breakdown is a common reproductive isolation observed in both intra and inter-specific crosses. It is a type of post-zygotic reproductive isolation in which sterility and weakness are manifested in the F2 and later generations. In this study, the physiological and molecular basis of hybrid breakdown caused by two recessive genes, hbd2 and hbd3, in a cross between japonica variety, Koshihikari, and indica variety, Habataki, were investigated. Fine mapping of hbd2 resulted in the identification of the causal gene as casein kinase I (CKI1). Further analysis revealed that hbd2-CKI1 allele gains its deleterious function that causes the weakness phenotype by a change of one amino acid. As for the other gene, hbd3 was mapped to the NBS-LRR gene cluster region. It is the most common class of R-gene that triggers the immune signal in response to pathogen attack. Expression analysis of pathogen response marker genes suggested that weakness phenotype in this hybrid breakdown can be attributed to an autoimmune response. So far, this is the first evidence linking autoimmune response to post-zygotic isolation in rice. This finding provides a new insight in understanding the molecular and evolutionary mechanisms establishing post-zygotic isolation in plants.  相似文献   
994.
The size and weight of an actuator tend to increase with actuator power because the actuator power-to-mass ratio is near constant for a given type of motor. Rapid motion such as jumping or running is difficult to realize by using simple actuator power. The aim of this research is to develop a high power joint mechanism that mimics the leg mechanism of a locust. The characteristics of the joint mechanism are evaluated using vector and dynamic analysis.The proposed high power joint mechanism consists of a closed link structure comprising four links and a spring. Linear actuators are attached to the top and bottom links, and the joint angle changes by controlling the lengths of the top and bottom links. A spring is located between two of the links, and is contracted using two linear actuators to provide stored force, which can be released instantaneously to produce a higher power response than that available directly from both actuators.The analysis demonstrates how the joint mechanism produces an output with a higher power than the rated input actuator power. The output characteristics of the joint mechanism depend on link length and link conditions.  相似文献   
995.
Equol is a metabolite produced from daidzein by enteric microflora, and it has attracted a great deal of attention because of its protective or ameliorative ability against several sex hormone-dependent diseases (e.g., menopausal disorder and lower bone density), which is more potent than that of other isoflavonoids. We purified a novel NADP(H)-dependent daidzein reductase (L-DZNR) from Lactococcus strain 20-92 (Lactococcus 20-92; S. Uchiyama, T. Ueno, and T. Suzuki, international patent WO2005/000042) that is involved in the metabolism of soy isoflavones and equol production and converts daidzein to dihydrodaidzein. Partial amino acid sequences were determined from purified L-DZNR, and the gene encoding L-DZNR was cloned. The nucleotide sequence of this gene consists of an open reading frame of 1,935 nucleotides, and the deduced amino acid sequence consists of 644 amino acids. L-DZNR contains two cofactor binding motifs and an 4Fe-4S cluster. It was further suggested that L-DZNR was an NAD(H)/NADP(H):flavin oxidoreductase belonging to the old yellow enzyme (OYE) family. Recombinant histidine-tagged L-DZNR was expressed in Escherichia coli. The recombinant protein converted daidzein to (S)-dihydrodaidzein with enantioselectivity. This is the first report of the isolation of an enzyme related to daidzein metabolism and equol production in enteric bacteria.Isoflavones are flavonoids present in various plants and are known to be abundant in soybeans and legumes. These compounds have been called phytoestrogens because their chemical structure is similar to that of the female sex hormone, estrogen. Isoflavones have an ability to bind to estrogen receptors and show protection against or improvement in several sex hormone-dependent diseases, such as breast cancer, prostate cancer, menopausal disorder, lower bone density, and hypertension, due to their weak agonistic or antagonistic effects (1, 19, 27).Daidzein is one of the main soy isoflavonoids produced from daidzin by the glucosidase of intestinal bacteria (17). Equol is a metabolite produced from daidzein by the enterobacterial microflora (5). Recently, equol has attracted a great deal of attention because its estrogenic activity is more potent than that of other isoflavonoids, including daidzein (27). It is well known that individual variation exists in the ability of these enteric microflora to produce equol and that less than half the human population is capable of producing equol after ingesting soy isoflavones (3). Therefore, to increase the production of equol in the enteric environment of each individual, the development of probiotics using safe bacteria which have the ability to produce equol from daidzein is ongoing.Lactococcus strain 20-92 (Lactococcus 20-92; 30a) is an equol-producing lactic acid bacterium isolated from the feces of healthy humans by Uchiyama et al. (30). This bacterium is spherical and Gram positive and is a strain of L. garvieae. The application of Lactococcus 20-92 in probiotics is advantageous because L. garvieae is not pathogenic or toxic to humans.To date, other bacterial strains that are capable of transforming daidzein to dihydrodaidzein or equol have been isolated (9, 21, 22, 23, 29, 32, 36, 37). Daidzein is thought to be metabolized by human intestinal bacteria to equol or to O-desmethylangolensin via dihydrodaidzein and tetrahydrodaidzein (14, 15, 22, 32); however, neither the enzymes involved in the metabolism of daidzein to equol nor even the metabolic pathway has been clarified fully for equol-producing bacteria.In this study, we purified an enzyme from Lactococcus 20-92 that assisted in the conversion of daidzein to dihydrodaidzein. Furthermore, we cloned the L-DZNR gene and expressed the active recombinant enzyme in E. coli.  相似文献   
996.
In order to synthesize a sugar ester at high concentration, 1,2-O-isopropylidene-α-d-glucofuranose (IpGlc), which is one of the sugar acetals and is more hydrophobic than unmodified glucose, was esterified with palmitic acid at 40°C using immobilized lipase from Candida antarctica in some organic solvents or their mixtures. Acetone + t-butyl alcohol (3:1 v/v) improved both the initial reaction rate and yield after 80 h: the product reached its maximum value (240 mmol/kg solvent; ca. 110 g/kg solvent) when 400 mmol IpGlc/kg solvent and 1,200 mmol palmitic acid/kg solvent were used in this solvent mixture.  相似文献   
997.
We surveyed changes of the gene expression profile in caerulein-exposed pancreas using Affymetrix GeneChip system (39,000 genes). Up-regulation of genes coding for claudin 4, claudin 7, F11 receptor, cadherin 1, integrin beta 4, syndecan 1, heat shock proteins b1/90aa1, Serpinb6a, Serpinb6b, Serpinb9, Bax, Bak1, calpain 2, calpain 5, microtubule-associated protein 1 light chain 3 alpha, S100 calcium-binding proteins A4/A10 were found in mouse pancreas exposed to caerulein for 12 h. In contrast, the anti-apoptotic gene Bcl2 was down-regulated. The functions of these genes concern tight junction formation, cell-cell/cell-matrix adhesions, stress response, protease inhibition, apoptosis, autophagy, and regulation of cytoskeletal dynamics. Caerulein-exposed pancreatic acinar cells were immunohistochemically stained for claudin 4, cadherin 1, integrin beta 4, heat shock protein b1, and Serpinb6a. In conclusion, we have newly identified a set of genes that are likely to be involved in endogenous self-protection mechanisms against acute pancreatitis.  相似文献   
998.
Background and aims: Transforming growth factor-beta (TGFβ) is known to potently inhibit cell growth. Loss of responsiveness to TGFβ inhibition on cell growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGFβ and HB-EGF signal transduction via ADAM activation.Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGFβ. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGFβ was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGFβ was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown.Result: TGFβ-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGFβ induced shedding of proHB-EGF allowing HB-EGF-CTF to translocate to the nucleus. ADAM inhibitors blocked this nuclear translocation. TGFβ enhanced gastric cancer cell growth and ADAM inhibitors suppressed this effect. EGFR phosphorylation, HB-EGF-CTF nuclear translocation, and cell growth were suppressed in ADAM17 knockdown cells.Conclusion: HB-EGF-CTF nuclear translocation and EGFR transactivation from proHB-EGF shedding mediated by ADAM17 activated by TGFβ might be an important pathway of gastric cancer cell proliferation by TGFβ.  相似文献   
999.
Epidemiological studies suggest that insulin resistance is an independent risk factor for cardiovascular disease. However, there is little information on the role of insulin resistance in atherosclerogenesis independent of LDL cholesterol level. The aim of this study was to investigate the impact of systemic insulin resistance on monocyte adhesion to endothelial cells and atherosclerotic lesions independent of LDL cholesterol level. KKAy mice are obese mice with spontaneous diabetes and insulin resistance, and normal levels of LDL cholesterol. In parallel with systemic insulin resistance, decreased insulin signal, and the increased expression of monocyte chemoattractant protein-1 (MCP-1) were noted in macrophages isolated from KKAy mice. These mice showed enhanced monocyte adhesion to the endothelial cells of the thoracic artery. Furthermore, these mice showed expanded atherosclerotic lesions when fed high cholesterol diet. Our data indicate that insulin resistance promotes the atherosclerogenesis independent of LDL cholesterol level. Decreased insulin signaling in macrophages associated with systemic insulin resistance could be involved, at least in part, in this pathological process.  相似文献   
1000.
Vascular endothelial growth factor (Vegf) was previously shown to be expressed specifically in the condylar cartilage of temporomandibular joint-osteoarthritis (TMJ-OA) model rats. Here we demonstrate for the first time that hypoxia-inducible factor-1α (Hif-1α) is activated in mature chondrocytes of temporomandibular joint-osteoarthritis (TMJ-OA) model rat by mechanical overload, and that activated Hif-1 in chondrocytes can induce osteoclastogenesis via repression of osteoprotegerin (Opg) expression.In rat TMJs, degeneration of the condylar cartilage became prominent in proportion to the duration of overloading. Hif-1α expression was observed specifically in mature and hypertrophic chondrocytes, and Hif-1α-positivity, level of Vegf expression, and tartrate-resistant acid phosphatase (TRAP)-positive cell numbers all increased in the same manner. When ATDC5 cells induced differentiation by insulin were cultured under hypoxia, Hif-1α induction was observed in mature stage, but not in immature stage. Inductions of Hif-1-target genes showed a similar expression pattern. In addition, expression of Opg decreased in hypoxia, and Hif-1α played a role, in part, in its regulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号