首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   11篇
  2024年   1篇
  2023年   1篇
  2021年   4篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   7篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2007年   3篇
  2006年   1篇
  2002年   3篇
  2001年   1篇
排序方式: 共有44条查询结果,搜索用时 62 毫秒
11.
Cardiolipin (CL) is a key mitochondrial phospholipid essential for mitochondrial energy production. CL is remodeled from monolysocardiolipin (MLCL) by the enzyme tafazzin (TAZ). Loss-of-function mutations in the gene which encodes TAZ results in a rare X-linked disorder called Barth Syndrome (BTHS). The mutated TAZ is unable to maintain the physiological CL:MLCL ratio, thus reducing CL levels and affecting mitochondrial function. BTHS is best known as a cardiac disease, but has been acknowledged as a multi-syndrome disorder, including cognitive deficits. Since reduced CL levels has also been reported in numerous neurodegenerative disorders, we examined how TAZ-deficiency impacts cognitive abilities, brain mitochondrial respiration and the function of hippocampal neurons and glia in TAZ knockdown (TAZ kd) mice. We have identified for the first time the profile of changes that occur in brain phospholipid content and composition of TAZ kd mice. The brain of TAZ kd mice exhibited reduced TAZ protein expression, reduced total CL levels and a 19-fold accumulation of MLCL compared to wild-type littermate controls. TAZ kd brain exhibited a markedly distinct profile of CL and MLCL molecular species. In mitochondria, the activity of complex I was significantly elevated in the monomeric and supercomplex forms with TAZ-deficiency. This corresponded with elevated mitochondrial state I respiration and attenuated spare capacity. Furthermore, the production of reactive oxygen species was significantly elevated in TAZ kd brain mitochondria. While motor function remained normal in TAZ kd mice, they showed significant memory deficiency based on novel object recognition test. These results correlated with reduced synaptophysin protein levels and derangement of the neuronal CA1 layer in hippocampus. Finally, TAZ kd mice had elevated activation of brain immune cells, microglia compared to littermate controls. Collectively, our findings demonstrate that TAZ-mediated remodeling of CL contributes significantly to the expansive distribution of CL molecular species in the brain, plays a key role in mitochondria respiratory activity, maintains normal cognitive function, and identifies the hippocampus as a potential therapeutic target for BTHS.  相似文献   
12.
Streptococcus mitis from the oral cavity causes endocarditis and other systemic infections. Rising resistance against traditional antibiotics amongst oral bacteria further aggravates the problem. Therefore, antimicrobial and antibiofilm activities of zinc oxide and titanium dioxide nanoparticles (NPs) synthesized and characterized during this study against S. mitis ATCC 6249 and Ora-20 were evaluated in search of alternative antimicrobial agents. ZnO and TiO2-NPs exhibited an average size of 35 and 13 nm, respectively. The IC50 values of ZnO and TiO2-NPs against S. mitis ATCC 6249 were 37 and 77 µg ml?1, respectively, while the IC50 values against S. mitis Ora-20 isolate were 31 and 53 µg ml?1, respectively. Live and dead staining, biofilm formation on the surface of polystyrene plates, and extracellular polysaccharide production show the same pattern. Exposure to these nanoparticles also shows an increase (26–83 %) in super oxide dismutase (SOD) activity. Three genes, namely bapA1, sodA, and gtfB like genes from these bacteria were identified and sequenced for quantitative real-time PCR analysis. An increase in sodA gene (1.4- to 2.4-folds) levels and a decrease in gtfB gene (0.5- to 0.9-folds) levels in both bacteria following exposure to ZnO and TiO2-NPs were observed. Results presented in this study verify that ZnO-NPs and TiO2-NPs can control the growth and biofilm formation activities of these strains at very low concentration and hence can be used as alternative antimicrobial agents for oral hygiene.  相似文献   
13.
14.
MOTIVATION: Fold recognition is a key step in the protein structure discovery process, especially when traditional sequence comparison methods fail to yield convincing structural homologies. Although many methods have been developed for protein fold recognition, their accuracies remain low. This can be attributed to insufficient exploitation of fold discriminatory features. RESULTS: We have developed a new method for protein fold recognition using structural information of amino acid residues and amino acid residue pairs. Since protein fold recognition can be treated as a protein fold classification problem, we have developed a Support Vector Machine (SVM) based classifier approach that uses secondary structural state and solvent accessibility state frequencies of amino acids and amino acid pairs as feature vectors. Among the individual properties examined secondary structural state frequencies of amino acids gave an overall accuracy of 65.2% for fold discrimination, which is better than the accuracy by any method reported so far in the literature. Combination of secondary structural state frequencies with solvent accessibility state frequencies of amino acids and amino acid pairs further improved the fold discrimination accuracy to more than 70%, which is approximately 8% higher than the best available method. In this study we have also tested, for the first time, an all-together multi-class method known as Crammer and Singer method for protein fold classification. Our studies reveal that the three multi-class classification methods, namely one versus all, one versus one and Crammer and Singer method, yield similar predictions. AVAILABILITY: Dataset and stand-alone program are available upon request.  相似文献   
15.
Galectins are β-galactoside binding lectins with a potential hemolytic role on erythrocyte membrane integrity and permeability. In the present study, goat heart galectin-1 (GHG-1) was purified and investigated for its hemolytic actions on erythrocyte membrane. When exposed to various saccharides, lactose and sucrose provided maximum protection against hemolysis, while glucose and galactose provided lesser protection against hemolysis. GHG-1 agglutinated erythrocytes were found to be significantly hemolyzed in comparison with unagglutinated erythrocytes. A concentration dependent rise in the hemolysis of trypsinized rabbit erythrocytes was observed in the presence of GHG-1. Similarly, a temperature dependent gradual increase in percent hemolysis was observed in GHG-1 agglutinated erythrocytes as compared to negligible hemolysis in unagglutinated cells. The hemolysis of GHG-1 treated erythrocytes showed a sharp rise with the increasing pH up to 7.5 which became constant till pH 9.5. The extent of erythrocyte hemolysis increased with the increase in the incubation period, with maximum hemolysis after 5 h of incubation. The results of this study establish the ability of galectins as a potential hemolytic agent of erythrocyte membrane, which in turn opens an interesting avenue in the field of proteomics and glycobiology.  相似文献   
16.
Familial Hypertrophic Cardiomyopathy (FHC) is an autosomal dominant disorder affecting the cardiac muscle and exhibits varied clinical symptoms because of genetic heterogeneity. Several disease causing genes have been identified and most code for sarcomere proteins. In the current study, we have carried out clinical and molecular analysis of FHC patients from India. FHC was detected using echocardiography and by analysis of clinical symptoms and family history. Disease causing mutations in the β-cardiac myosin heavy chain (MYH7) and Myosin binding protein C3 (MYBPC3) genes were identified using Polymerase Chain Reaction-Deoxyribose Nucleic Acid (PCR-DNA) sequencing. Of the 55 patient samples screened, mutations were detected in only nineteen in the two genes; MYBPC3 mutations were identified in 12 patients while MYH7 mutations were identified in five, two patients exhibited double heterozygosity. All four MYH7 mutations were missense mutations, whereas only 3/9 MYPBC3 mutations were missense mutations. Four novel mutations in MYBPC3 viz. c.456delC, c.2128G>A (p.E710K), c.3641G>A (p.W1214X), and c.3656T>C (p.L1219P) and one in MYH7 viz. c.965C>T (p.S322F) were identified. A majority of missense mutations affected conserved amino acid residues and were predicted to alter the structure of the corresponding mutant proteins. The study has revealed a greater frequency of occurrence of MYBPC3 mutations when compared to MYH7 mutations.  相似文献   
17.
Cynaroside, a flavonoid, has been shown to have antibacterial, antifungal and anticancer activities. Here, we evaluated its antileishmanial properties and its mechanism of action through different in silico and in vitro assays. Cynaroside exhibited antileishmanial activity in time- and dose-dependent manner with 50% of inhibitory concentration (IC50) value of 49.49 ± 3.515 µM in vitro. It inhibited the growth of parasite significantly at only 20 µM concentration when used in combination with miltefosine, a standard drug which has very high toxicity. It also inhibited the intra-macrophagic parasite significantly at low doses when used in combination with miltefosine. It showed less toxicity than the existing antileishmanial drug, miltefosine at similar doses. Propidium iodide staining showed that cynaroside inhibited the parasites in G0/G1 phase of cell cycle. 2,7-dichloro dihydro fluorescein diacetate (H2DCFDA) staining showed cynaroside induced antileishmanial activity through reactive oxygen species (ROS) generation in parasites. Molecular-docking studies with key drug targets of Leishmania donovani showed significant inhibition. Out of these targets, cynaroside showed strongest affinity with uridine diphosphate (UDP)-galactopyranose mutase with −10.4 kcal/mol which was further validated by molecular dynamics (MD) simulation. The bioactivity, ADMET (absorption, distribution, metabolism, excretion and toxicity) properties, Organisation for Economic Co-operation and Development (OECD) chemical classification and toxicity risk prediction showed cynaroside as an enzyme inhibitor having sufficient solubility and non-toxic properties. In conclusion, cynaroside may be used alone or in combination with existing drug, miltefosine to control leishmaniasis with less cytotoxicity.  相似文献   
18.
Formation of advanced glycation end products (AGE) is crucially involved in the several pathophysiologies associated with ageing and diabetes, for example arthritis, atherosclerosis, chronic renal insufficiency, Alzheimer’s disease, nephropathy, neuropathy, and cataracts. Because of devastating effects of AGE and the significance of bovine serum albumin (BSA) as a transport protein, this study was designed to investigate glycation-induced structural modifications in BSA and their functional consequences in breast cancer cell line (MCF-7). We incubated d-ribose with BSA and monitored formation of d-ribose-glycated BSA by observing changes in the intensity of fluorescence at 410 nm. NBT (nitro blue tetrazolium) assay was performed to confirm formation of keto-amine during glycation. Absorbance at 540 nm (fructosamine) increased markedly with time. Furthermore, intrinsic protein and 8-anilino-1-naphthalenesulfonate (ANS) fluorescence revealed marked conformational changes in BSA upon ribosylation. In addition, a fluorescence assay with thioflavin T (ThT) revealed a remarkable increase in fluorescence at 485 nm in the presence of glycated BSA. This suggests that glycation with d-ribose induced aggregation of BSA into amyloid-like deposits. Circular dichroism (CD) study of native and ribosylated BSA revealed molten globule formation in the glycation pathway of BSA. Functional consequences of ribosylated BSA on cancer cell line, MCF-7 was studied by MTT assay and ROS estimation. The results revealed cytotoxicity of ribosylated BSA on MCF-7 cells.  相似文献   
19.
The knowledge collated from the known protein structures has revealed that the proteins are usually folded into the four structural classes: all-α, all-β, α/β and α + β. A number of methods have been proposed to predict the protein's structural class from its primary structure; however, it has been observed that these methods fail or perform poorly in the cases of distantly related sequences. In this paper, we propose a new method for protein structural class prediction using low homology (twilight-zone) protein sequences dataset. Since protein structural class prediction is a typical classification problem, we have developed a Support Vector Machine (SVM)-based method for protein structural class prediction that uses features derived from the predicted secondary structure and predicted burial information of amino acid residues. The examination of different individual as well as feature combinations revealed that the combination of secondary structural content, secondary structural and solvent accessibility state frequencies of amino acids gave rise to the best leave-one-out cross-validation accuracy of ~81% which is comparable to the best accuracy reported in the literature so far.  相似文献   
20.
Growing genetic evidence is converging in favor of common pathogenic mechanisms for autism spectrum disorders (ASD), intellectual disability (ID or mental retardation) and schizophrenia (SCZ), three neurodevelopmental disorders affecting cognition and behavior. Copy number variations and deleterious mutations in synaptic organizing proteins including NRXN1 have been associated with these neurodevelopmental disorders, but no such associations have been reported for NRXN2 or NRXN3. From resequencing the three neurexin genes in individuals affected by ASD (n = 142), SCZ (n = 143) or non-syndromic ID (n = 94), we identified a truncating mutation in NRXN2 in a patient with ASD inherited from a father with severe language delay and family history of SCZ. We also identified a de novo truncating mutation in NRXN1 in a patient with SCZ, and other potential pathogenic ASD mutations. These truncating mutations result in proteins that fail to promote synaptic differentiation in neuron coculture and fail to bind either of the established postsynaptic binding partners LRRTM2 or NLGN2 in cell binding assays. Our findings link NRXN2 disruption to the pathogenesis of ASD for the first time and further strengthen the involvement of NRXN1 in SCZ, supporting the notion of a common genetic mechanism in these disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号