首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   6篇
  2022年   1篇
  2021年   2篇
  2018年   5篇
  2017年   1篇
  2016年   2篇
  2015年   6篇
  2014年   7篇
  2013年   9篇
  2012年   15篇
  2011年   12篇
  2010年   6篇
  2009年   3篇
  2008年   12篇
  2007年   4篇
  2006年   13篇
  2005年   2篇
  2004年   10篇
  2003年   9篇
  2002年   10篇
  2001年   7篇
  2000年   8篇
  1999年   3篇
  1998年   7篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1992年   2篇
  1991年   5篇
  1990年   4篇
  1987年   1篇
  1986年   1篇
  1979年   2篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1966年   2篇
  1965年   2篇
排序方式: 共有192条查询结果,搜索用时 931 毫秒
51.
High mobility group box 1 (HMGB1), a highly conserved, ubiquitous protein, is released into the circulation during sterile inflammation (e.g. arthritis, trauma) and circulatory shock. It participates in the pathogenesis of delayed inflammatory responses and organ dysfunction. While several molecules have been identified that modulate the release of HMGB1, less attention has been paid to identify pharmacological inhibitors of the downstream inflammatory processes elicited by HMGB1 (C23-C45 disulfide C106 thiol form). In the current study, a cell-based medium-throughput screening of a 5000+ compound focused library of clinical drugs and drug-like compounds was performed in murine RAW264.7 macrophages, in order to identify modulators of HMGB1-induced tumor-necrosis factor alpha (TNFα) production. Clinically used drugs that suppressed HMGB1-induced TNFα production included glucocorticoids, beta agonists, and the anti-HIV compound indinavir. A re-screen of the NIH clinical compound library identified beta-agonists and various intracellular cAMP enhancers as compounds that potentiate the inhibitory effect of glucocorticoids on HMGB1-induced TNFα production. The molecular pathways involved in this synergistic anti-inflammatory effect are related, at least in part, to inhibition of TNFα mRNA synthesis via a synergistic suppression of ERK/IκB activation. Inhibition of TNFα production by prednisolone+salbutamol pretreatment was also confirmed in vivo in mice subjected to HMGB1 injection; this effect was more pronounced than the effect of either of the agents administered separately. The current study unveils several drug-like modulators of HMGB1-mediated inflammatory responses and offers pharmacological directions for the therapeutic suppression of inflammatory responses in HMGB1-dependent diseases.  相似文献   
52.
To date, there are no constitutive models for either the natural or bioprosthetic aortic valve (AV), in part due to experimental complications related to the AV's small size and heterogeneous fibrous structure. In this study, we developed specialized biaxial testing techniques for the AV cusp, including a method to determine the local structure-strain relationship to assess the effects of boundary tethering forces. Natural and glutaraldehyde (GL) treated cusps were subjected to an extensive biaxial testing protocol in which the ratios of the axial tensions were held at constant values. Results indicated that the local fiber architecture clearly dominated cuspal deformation, and that the tethering effects at the specimen boundaries were negligible. Due to unique aspects of cuspal fiber architecture, the most uniform region of deformation was found at the lower portion as opposed to the center of the cuspal specimen. In general, the circumferential strains were much smaller than the radial strains, indicating a profound degree of mechanical anisotropy, and that natural cusps were significantly more extensible than the GL treated cusps. Strong mechanical coupling between biaxial stretch axes produced negative circumferential strains under equibiaxial tension. Further, the large radial strains observed could not be explained by uncrimping of the collagen fibers, but may be due to large rotations of the highly aligned, circumferential-oriented collagen fibers in the fibrosa. In conclusion, this study provides new insights into the AV cusp's structure-function relationship in addition to requisite data for constitutive modeling.  相似文献   
53.
54.
55.
Like many juggernauts in biology, the elusive nature of nitric oxide (NO) sprints through the fields, sometimes the savior, at other times the scimitar. In the liver, which is the metabolic center of the organism, hepatocytes and immune cells trade blows using the reactive diatomic molecule NO to induce cellular damage under toxic conditions. In response, hepatocytes can utilize several mechanisms of NO to their protective advantage by prohibiting the activation of programmed cell death, a.k.a. apoptosis. The balance of these effects in this reactive milieu set the stage for the homeostatic response to cellular injury that determines whether hepatocytes will live, die, or regenerate. Insights that we and others have gained from the liver under pathologic conditions of stress can be applied to the understanding of cellular death mechanisms in other organs and tissues.  相似文献   
56.
Hypoxia is a common environmental stress. Particularly, the center of rapidly growing solid tumors is easily exposed to hypoxic conditions. Thus, tumor cell response to hypoxia plays an important role in tumor progression as well as tumor therapy. However, little is known about hypoxic effect on apoptotic cell death. To examine the effects of hypoxia on TRAIL-induced apoptosis, human lung carcinoma A549 cells were exposed to hypoxia and treated with TRAIL protein. Hypoxia significantly protected A549 cells from apoptosis induced by TRAIL. Western blotting analysis demonstrated that hypoxia increased expression of antiapoptotic proteins such as Bcl-2, Bcl-XL, and IAP family members. The increase of these antiapoptotic molecules is believed to play an hypoxia-mediated protective role in TRAIL-induced apoptosis. Our findings suggest that an increase of antiapoptotic proteins induced by hypoxia may regulate the therapeutic activity of TRAIL protein in cancer therapy.  相似文献   
57.
58.

Background

Complex biological processes such as acute inflammation induced by trauma/hemorrhagic shock/ (T/HS) are dynamic and multi-dimensional. We utilized multiplexing cytokine analysis coupled with data-driven modeling to gain a systems perspective into T/HS.

Methodology/Principal Findings

Mice were subjected to surgical cannulation trauma (ST) ± hemorrhagic shock (HS; 25 mmHg), and followed for 1, 2, 3, or 4 h in each case. Serum was assayed for 20 cytokines and NO2 /NO3 . These data were analyzed using four data-driven methods (Hierarchical Clustering Analysis [HCA], multivariate analysis [MA], Principal Component Analysis [PCA], and Dynamic Network Analysis [DyNA]). Using HCA, animals subjected to ST vs. ST + HS could be partially segregated based on inflammatory mediator profiles, despite a large overlap. Based on MA, interleukin [IL]-12p40/p70 (IL-12.total), monokine induced by interferon-γ (CXCL-9) [MIG], and IP-10 were the best discriminators between ST and ST/HS. PCA suggested that the inflammatory mediators found in the three main principal components in animals subjected to ST were IL-6, IL-10, and IL-13, while the three principal components in ST + HS included a large number of cytokines including IL-6, IL-10, keratinocyte-derived cytokine (CXCL-1) [KC], and tumor necrosis factor-α [TNF-α]. DyNA suggested that the circulating mediators produced in response to ST were characterized by a high degree of interconnection/complexity at all time points; the response to ST + HS consisted of different central nodes, and exhibited zero network density over the first 2 h with lesser connectivity vs. ST at all time points. DyNA also helped link the conclusions from MA and PCA, in that central nodes consisting of IP-10 and IL-12 were seen in ST, while MIG and IL-6 were central nodes in ST + HS.

Conclusions/Significance

These studies help elucidate the dynamics of T/HS-induced inflammation, complementing other forms of dynamic mechanistic modeling. These methods should be applicable to the analysis of other complex biological processes.  相似文献   
59.
The processes of development, repair, and remodeling of virtually all tissues and organs, are dependent upon mechanical signals including external loading, cell-generated tension, and tissue stiffness. Over the past few decades, much has been learned about mechanotransduction pathways in specialized two-dimensional culture systems; however, it has also become clear that cells behave very differently in two- and three-dimensional (3D) environments. Three-dimensional in vitro models bring the ability to simulate the in vivo matrix environment and the complexity of cell–matrix interactions together. In this review, we describe the role of tension in regulating cell behavior in three-dimensional collagen and fibrin matrices with a focus on the effective use of global boundary conditions to modulate the tension generated by populations of cells acting in concert. The ability to control and measure the tension in these 3D culture systems has the potential to increase our understanding of mechanobiology and facilitate development of new ways to treat diseased tissues and to direct cell fate in regenerative medicine and tissue engineering applications.  相似文献   
60.
Recent observations suggest that cells on fibrous extracellular matrix materials sense mechanical signals over much larger distances than they do on linearly elastic synthetic materials. In this work, we systematically investigate the distance fibroblasts can sense a rigid boundary through fibrous gels by quantifying the spread areas of human lung fibroblasts and 3T3 fibroblasts cultured on sloped collagen and fibrin gels. The cell areas gradually decrease as gel thickness increases from 0 to 150 μm, with characteristic sensing distances of >65 μm below fibrin and collagen gels, and spreading affected on gels as thick as 150 μm. These results demonstrate that fibroblasts sense deeper into collagen and fibrin gels than they do into polyacrylamide gels, with the latter exhibiting characteristic sensing distances of <5 μm. We apply finite-element analysis to explore the role of strain stiffening, a characteristic mechanical property of collagen and fibrin that is not observed in polyacrylamide, in facilitating mechanosensing over long distances. Our analysis shows that the effective stiffness of both linear and nonlinear materials sharply increases once the thickness is reduced below 5 μm, with only a slight enhancement in sensitivity to depth for the nonlinear material at very low thickness and high applied traction. Multiscale simulations with a simplified geometry predict changes in fiber alignment deep into the gel and a large increase in effective stiffness with a decrease in substrate thickness that is not predicted by nonlinear elasticity. These results suggest that the observed cell-spreading response to gel thickness is not explained by the nonlinear strain-stiffening behavior of the material alone and is likely due to the fibrous nature of the proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号