首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58902篇
  免费   4836篇
  国内免费   5387篇
  2024年   96篇
  2023年   741篇
  2022年   1246篇
  2021年   3105篇
  2020年   2169篇
  2019年   2577篇
  2018年   2398篇
  2017年   1883篇
  2016年   2607篇
  2015年   3756篇
  2014年   4536篇
  2013年   4600篇
  2012年   5478篇
  2011年   4974篇
  2010年   3032篇
  2009年   2768篇
  2008年   3123篇
  2007年   2772篇
  2006年   2428篇
  2005年   2035篇
  2004年   1612篇
  2003年   1508篇
  2002年   1161篇
  2001年   1012篇
  2000年   961篇
  1999年   847篇
  1998年   530篇
  1997年   469篇
  1996年   494篇
  1995年   433篇
  1994年   418篇
  1993年   331篇
  1992年   456篇
  1991年   328篇
  1990年   288篇
  1989年   263篇
  1988年   217篇
  1987年   198篇
  1986年   179篇
  1985年   156篇
  1984年   116篇
  1983年   125篇
  1982年   88篇
  1981年   47篇
  1980年   51篇
  1979年   63篇
  1976年   49篇
  1974年   55篇
  1973年   45篇
  1972年   55篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Fibroblast growth factor 21 (FGF21), a metabolic hormone with pleiotropic effects on glucose and lipid metabolism and insulin sensitivity, alleviates the process of acute pancreatitis (AP). However, its mechanism remains elusive. The pathological and physiological characteristics of FGF21 are observed in both patients with AP and cerulein‐induced AP models, and the mechanisms of FGF21 in response to AP are investigated by evaluating the impact of autophagy in FGF21‐treated mice and cultured pancreatic cells. Circulating levels of FGF21 significantly increase in both AP patients and cerulein‐induced AP mice, which is accompanied by the change of pathology in pancreatic injury. Replenishment of FGF21 distinctly reverses cerulein‐induced pancreatic injury and improves cerulein‐induced autophagy damage in vivo and in vitro. Mechanically, FGF21 acts on pancreatic acinar cells to up‐regulate Sirtuin‐1 (Sirt1) expression, which in turn repairs impaired autophagy and removes damaged organs. In addition, blockage of Sirt1 accelerates cerulein‐induced pancreatic injury and weakens the regulative effect in FGF21‐activated autophagy in mice. These results showed that FGF21 protects against cerulein‐induced AP by activation of Sirtuin‐1‐autophagy axis.  相似文献   
992.
High‐fat diet (HFD) is a well‐known risk factor for gut microbiota dysbiosis and colorectal cancer (CRC). However, evidence relating HFD, gut microbiota and carcinogenesis is limited. Our study aimed to demonstrate that HFD‐induced gut dysbiosis promoted intestinal adenoma‐adenocarcinoma sequence. In clinical study, we found that HFD increased the incidence of advanced colorectal neoplasia (AN). The expression of monocyte chemoattractant protein 1 (MCP‐1), CC chemokine receptor 2 (CCR2) and CD163 in CRC patients with HFD was significantly higher than that in CRC patients with normal diet. When it comes to the Apcmin/+ mice, HFD consumption could induce gut dysbiosis and promote intestinal carcinogenesis, accompanying with activation of MCP‐1/CCR2 axis that recruited and polarized M2 tumour‐associated macrophages. Interestingly, transfer of faecal microbiota from HFD‐fed mice to another batch of Apcmin/+ mice in the absence of HFD could also enhance carcinogenesis without significant body weight gain and induced MCP‐1/CCR2 axis activation. HFD‐induced dysbiosis could also be transmitted. Meanwhile, antibiotics cocktail treatment was sufficient to inhibit HFD‐induced carcinogenesis, indicating the vital role of dysbiosis in cancer development. Conclusively, these data indicated that HFD‐induced dysbiosis accelerated intestinal adenoma‐adenocarcinoma sequence through activation of MCP‐1/CCR2 axis, which would provide new insight into better understanding of the mechanisms and prevention for HFD‐related CRC.  相似文献   
993.
994.
In this study, we investigated the effects of isorhamnetin on myocardial ischaemia reperfusion (I/R) injury in Langendorff-perfused rat hearts. Isorhamnetin treatment (5, 10 and 20 μg/mL) significantly alleviated cardiac morphological injury, reduced myocardial infarct size, decreased the levels of marker enzymes (LDH and CK) and improved the haemodynamic parameters, reflected by the elevated levels of the left ventricular developed pressure (LVDP), coronary flow (CF) and the maximum up/down velocity of left ventricular pressure (+dp/dtmax). Moreover, isorhamnetin reperfusion inhibited apoptosis of cardiomyocytes in the rats subjected to cardiac I/R in a dose-dependent manner concomitant with decreased protein expression of Bax and cleaved-caspase-3, as well as increased protein expression of Bcl-2. In addition, I/R-induced oxidative stress was manifestly mitigated by isorhamnetin treatment, as showed by the decreased malondialdehyde (MDA) level and increased antioxidant enzymes activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). These results indicated that isorhamnetin exerts a protective effect against I/R-induced myocardial injury through the attenuation of apoptosis and oxidative stress.  相似文献   
995.
Long non‐coding RNAs (LncRNAs) and DNA methylation are important epigenetic mark play a key role in liver fibrosis. Currently, how DNA methylation and LncRNAs control the hepatic stellate cell (HSC) activation and fibrosis has not yet been fully characterized. Here, we explored the role of antisense non‐coding RNA in the INK4 locus (ANRIL) and DNA methylation in HSC activation and fibrosis. The expression levels of DNA methyltransferases 3A (DNMT3A), ANRIL, α‐Smooth muscle actin (α‐SMA), Type I collagen (Col1A1), adenosine monophosphate‐activated protein kinase (AMPK) and p‐AMPK in rat and human liver fibrosis were detected by immunohistochemistry, qRT‐PCR and Western blotting. Liver tissue histomorphology was examined by haematoxylin and eosin (H&E), Sirius red and Masson staining. HSC was transfected with DNMT3A‐siRNA, over‐expressing ANRIL and down‐regulating ANRIL. Moreover, cell proliferation ability was examined by CCK‐8, MTT and cell cycle assay. Here, our study demonstrated that ANRIL was significantly decreased in activated HSC and liver fibrosis tissues, while Col1A1, α‐SMA and DNMT3A were significantly increased in activated HSC and liver fibrosis tissues. Further, we found that down‐regulating DNMT3A expression leads to inhibition of HSC activation. Reduction in DNMT3A elevated ANRIL expression in activated HSC. Furthermore, we performed the over expression ANRIL suppresses HSC activation and AMPK signalling pathways. In sum, our study found that epigenetic DNMT3A silencing of ANRIL enhances liver fibrosis and HSC activation through activating AMPK pathway. Targeting epigenetic modulators DNMT3A and ANRIL, and offer a novel approach for liver fibrosis therapy.  相似文献   
996.
Although the diagnosis and therapy approach developed, techniques for the early diagnosis of HCC remain insufficient which results in poor prognosis of patients. The traditional biomarker AFP, however, has been proved with low specificity. Circulating exosomal ncRNAs revealed different profiles reflecting the characteristics of tumour. In this study, we mainly focused on circulating exosomal ncRNAs which might be the fingerprint for HCC, especially for the diagnosis or metastasis prediction. A high throughput lncRNA microarray in exosomes extracted from cell‐free plasma was applied. The risk score analysis was employed to screen the potential exosome‐derived lncRNAs in two independent sets based on different clinical parameters in 200 paired HCC patients. After a multi‐stage validation, we finally revealed three lncRNAs, ENSG00000248932.1, ENST00000440688.1 and ENST00000457302.2, increased in HCC comparing with the both chronic hepatitis (CH) patients and cancer‐free controls. ROC curve revealed a higher sensitivity and specificity in predicting the occurrence of HCC from cancer‐free controls and CH patients with the area under curve (AUC) of 0.905 and 0.879 by combining AFP. The three lncRNA panel combined with AFP also indicted a fingerprint function in predicting the metastasis of HCC with the AUC of 0.870. In conclusion, ENSG00000248932.1, ENST00000440688.1 and ENST00000457302.2 might be the potential biomarker for the tumorigenesis prediction from CH patients or healthy controls and may also be applied for dynamic monitoring the metastasis of HCC.  相似文献   
997.
998.
The fruit of Crataegus dahurica Koehne was used to treat the disease of infantile indigestion and dyspepsia as an ethnic medicine and food. As a continuous work on finding the active constituents from the edible herbs, four new biphenyl derivatives ( 1 – 4 ), together with two known compounds ( 5 and 6 ), were obtained from the petroleum ether fraction of the fruits of C. dahurica. Their structures were determined by the extensive 1D and 2D NMR spectra and HR‐MS spectrometry. Furthermore, the anti‐inflammatory activities of all the isolated compounds were investigated, in which compound 4 showed moderately inhibitory effects on NO production in RAW264.7 cells without inducing cytotoxicity.  相似文献   
999.
Ginseng and the seed of Zizyphus jujuba var. spinosa, which are traditional Chinese medicinal materials, were often used in ancient Chinese recipes as a pair of medicines. They can replenish the primordial qi and tonify the spleen. This study investigated the effects of ginseng and the seed of Zizyphus jujuba var. spinosa (GS) extract on gut microbiota diversity in rats with spleen deficiency syndrome (SDS). A total of 52 compounds (including 16 flavonoids, 35 saponins, and 1 alkaloid) were identified and analyzed from the GS extract by UPLC‐Q‐Orbitrap‐MS/MS. The GS extract significantly increased the relative abundance of Firmicutes and Bacteroidetes in rats with SDS but decreased that of Proteobacteria and Actinobacteria. At the genus level, the GS extract significantly increased the relative abundance of Lactobacillus and Bifidobacterium in rats with SDS but decreased that of Streptococcus, Escherichia‐Shigella, Veillonella, and Enterococcus. In addition, the GS extract influenced glucose and amino acid metabolism. In summary, the results showed that the GS extract changed the structure and diversity of gut microbiota in rats with SDS and balanced the metabolic process.  相似文献   
1000.
Squalene has been used as a dietary supplement for a long history due to its potential cancer‐preventive function. However, the mechanism has not been investigated in detail yet. Therefore, the aim of this study is to see if the plasma coenzyme Q10 (CoQ10) level will be altered by gavage of squalene and oxidosqualenes to rats. In the present work, a sensitive and simple high‐performance analytical method based on ultra‐high‐performance liquid chromatography coupled with an Orbitrap mass spectrometry (UPLC‐Orbitrap‐MS) was developed for the quantification of CoQ10 in rat plasma. Coenzyme Q9 (CoQ9) was employed as the internal standard. CoQ10 was determined after acetonitrile‐mediated plasma protein precipitation using UPLC‐Orbitrap‐MS in negative ion mode. Intragastric administration of squalene and the two squalene epoxides into rats once daily for several days elevated the level of CoQ10 in their plasma, but there was no significant difference between high‐dose (286 mg/kg) and low‐dose (143 mg/kg) groups. Intragastric administration of squalene once a day for 5 consecutive days and oxidosqualenes once a day for 3 consecutive days is necessary for reaching the steady‐state level of CoQ10. Our present findings indicate that squalene and oxidosqualenes may be useful for stimulating the synthesis of CoQ10 in rats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号