首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   27篇
  2023年   2篇
  2022年   2篇
  2021年   12篇
  2020年   7篇
  2019年   10篇
  2018年   7篇
  2017年   9篇
  2016年   17篇
  2015年   25篇
  2014年   15篇
  2013年   15篇
  2012年   14篇
  2011年   12篇
  2010年   15篇
  2009年   7篇
  2008年   10篇
  2007年   11篇
  2006年   8篇
  2005年   6篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1900年   1篇
排序方式: 共有215条查询结果,搜索用时 148 毫秒
211.
Histones of the H1 group (linker histones) are abundant components of chromatin in eukaryotes, occurring on average at one molecule per nucleosome. The recent reports on the lack of a clear phenotypic effect of knock-out mutations as well as overexpression of histone H1 genes in different organisms have seriously undermined the long-held view that linker histones are essential for the basic functions of eukaryotic cells. In an attempt to resolve the paradox of an abundant conserved protein without a clear function, we re-examined the molecular and phylogenetic data on linker histones to see if they could reveal any correlation between the features of H1 and the functional or morphological characteristics of cells or organisms. Because of an earlier demonstration that in sea urchin the chromatin-type histone H1 is also found in the flagellar microtubules (Multigner et al. 1992), we focused on the correlation between the features of H1 and those of microtubular structures. A phylogenetic tree based on multiple alignment of over 100 available H1 sequences suggests that the first divergence of the globular domain of H1 (GH1) resulted in branching into separate types characteristic for plants/Dictyostelium and for animals/ascomycetes, respectively. The GH1s of these two types differ by a short region (usually 5 amino acids) placed at a specific location within the C-terminal wing subdomain of GH1. Evolutionary analysis of the diversification of H1 mRNA into cell-cycle-dependent (polyA) and independent (polyA+) forms showed a mosaic occurrence of these two forms in plants and animals, despite the fact that the H1 proteins of plants and animals belong to two well-distinguished groups. However, among organisms from both animal and plant kingdom, only those with H1 mRNA of a polyA type have flagellated gametes. This correlation as well as the demonstration that in Volvox carteri the accumulation of polyA mRNA of H1 occurs concurrently with the production of new flagella (Lindauer et al. 1993), suggests a direct link between polyA phenotype of histone H1 mRNA and flagellogenesis. Received: 25 May 2000 / Accepted: 5 February 2001  相似文献   
212.
213.
214.
The distribution of a group of fish and macroinvertebrates (n = 52) resident in the US Northeast Shelf large marine ecosystem were characterized with species distribution models (SDM), which in turn were used to estimate occurrence and biomass center of gravity (COG). The SDMs were fit using random forest machine learning and were informed with a range of physical and biological variables. The estimated probability of occurrence and biomass from the models provided the weightings to determine depth, distance to the coast, and along‐shelf distance COG. The COGs of occupancy and biomass habitat tended to be separated by distances averaging 50 km, which approximates half of the minor axis of the subject ecosystem. During the study period (1978–2018), the biomass COG has tended to shift to further offshore positions whereas occupancy habitat has stayed at a regular spacing from the coastline. Both habitat types have shifted their along‐shelf distances, indicating a general movement to higher latitude or to the Northeast for this ecosystem. However, biomass tended to occur at lower latitudes in the spring and higher latitude in the fall in a response to seasonal conditions. Distribution of habitat in relation to depth reveals a divergence in response with occupancy habitat shallowing over time and biomass habitat distributing in progressively deeper water. These results suggest that climate forced change in distribution will differentially affect occurrence and biomass of marine taxa, which will likely affect the organization of ecosystems and the manner in which human populations utilize marine resources.  相似文献   
215.
The present study was undertaken for further elucidation of the mechanisms of flavonoid biological activity, focusing on the antioxidative and protective effects of cranberry flavonoids in free radical‐generating systems and those on mitochondrial ultrastructure during carbon tetrachloride‐induced rat intoxication. Treatment of rats with cranberry flavonoids (7 mg/kg) during chronic carbon tetrachloride‐induced intoxication led to prevention of mitochondrial damage, including fragmentation, rupture and local loss of the outer mitochondrial membrane. In radical‐generating systems, cranberry flavonoids effectively scavenged nitric oxide (IC50 = 4.4 ± 0.4 µg/ml), superoxide anion radicals (IC50 = 2.8 ± 0.3 µg/ml) and hydroxyl radicals (IC50 = 53 ± 4 µg/ml). The IC50 for reduction of 1,1‐diphenyl‐2‐picrylhydrazyl radicals (DPPH) was 2.2 ± 0.3 µg/ml. Flavonoids prevented to some extent lipid peroxidation in liposomal membranes and glutathione oxidation in erythrocytes treated with UV irradiation or organic hydroperoxides as well as decreased the rigidity of the outer leaflet of the liposomal membranes. The hepatoprotective potential of cranberry flavonoids could be due to specific prevention of rat liver mitochondrial damage. The mitochondria‐addressed effects of flavonoids might be related both to radical‐scavenging properties and modulation of various mitochondrial events. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号