首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   939篇
  免费   35篇
  2021年   8篇
  2020年   6篇
  2019年   10篇
  2018年   10篇
  2017年   9篇
  2016年   9篇
  2015年   25篇
  2014年   23篇
  2013年   63篇
  2012年   39篇
  2011年   29篇
  2010年   23篇
  2009年   24篇
  2008年   26篇
  2007年   38篇
  2006年   41篇
  2005年   28篇
  2004年   35篇
  2003年   42篇
  2002年   52篇
  2001年   26篇
  2000年   34篇
  1999年   24篇
  1998年   12篇
  1997年   12篇
  1996年   9篇
  1994年   13篇
  1992年   21篇
  1991年   19篇
  1990年   19篇
  1989年   14篇
  1988年   15篇
  1987年   18篇
  1986年   7篇
  1985年   11篇
  1984年   9篇
  1983年   11篇
  1982年   11篇
  1981年   7篇
  1980年   16篇
  1979年   10篇
  1978年   6篇
  1977年   7篇
  1976年   17篇
  1975年   12篇
  1974年   15篇
  1973年   8篇
  1972年   10篇
  1970年   9篇
  1966年   5篇
排序方式: 共有974条查询结果,搜索用时 27 毫秒
91.
Several groups of marine fishes and squids form mutualistic bioluminescent symbioses with luminous bacteria. The dependence of the animal on its symbiont for light production, the animal's specialized anatomical adaptations for harboring bacteria and controlling light emission, and the host family bacterial species specificity characteristic of these associations suggest that bioluminescent symbioses are tightly coupled associations that might involve coevolutionary interactions. Consistent with this possibility, evidence of parallel cladogenesis has been reported for squid–bacterial associations. However, genetic adaptations in the bacteria necessary for and specific to symbiosis have not been identified, and unlike obligate endosymbiotic associations in which the bacteria are transferred vertically, bacterially bioluminescent hosts acquire their light‐organ symbionts from the environment with each new host generation. These contrasting observations led us to test the hypotheses of species specificity and codivergence in bioluminescent symbioses, using an extensive sampling of naturally formed associations. Thirty‐five species of fish in seven teleost families (Chlorophthalmidae, Macrouridae, Moridae, Trachichthyidae, Monocentridae, Acropomatidae, Leiognathidae) and their light‐organ bacteria were examined. Phylogenetic analysis of a taxonomically broad sampling of associations was based on mitochondrial 16S rRNA and cytochrome oxidase I gene sequences for the fish and on recA, gyrB and luxA sequences for bacteria isolated from the light organs of these specimens. In a fine‐scale test focused on Leiognathidae, phylogenetic analysis was based also on histone H3 subunit and 28S rRNA gene sequences for the fish and on gyrB, luxA, luxB, luxF and luxE sequences for the bacteria. Deep divergences were revealed among the fishes, and clear resolution was obtained between clades of the bacteria. In several associations, bacterial species identities contradicted strict host family bacterial species specificity. Furthermore, the fish and bacterial phylogenies exhibited no meaningful topological congruence; evolutionary divergence of host fishes was not matched by a similar pattern of diversification in the symbiotic bacteria. Re‐analysis of data reported for squids and their luminous bacteria also revealed no convincing evidence of codivergence. These results refute the hypothesis of strict host family bacterial species specificity and the hypothesis of codivergence in bioluminescent symbioses. © The Willi Hennig Society 2007.  相似文献   
92.
BackgroundChagas disease, caused by the parasite Trypanosoma cruzi, is a neglected tropical disease that causes severe human health problems. To develop a new chemotherapeutic agent for the treatment of Chagas disease, we predicted a pharmacophore model for T. cruzi dihydroorotate dehydrogenase (TcDHODH) by fragment molecular orbital (FMO) calculation for orotate, oxonate, and 43 orotate derivatives.Conclusions/SignificanceFMO-based interaction energy analyses revealed a pharmacophore model for TcDHODH inhibitor. Hydrogen bond acceptor pharmacophores correspond to Lys43 and Lys214, hydrogen bond donor and acceptor pharmacophores correspond to Asn67 and Asn194, and the aromatic ring pharmacophore corresponds to FMN, which shows important characteristics of compounds that inhibit TcDHODH. In addition, the Lys214 residue is not conserved between TcDHODH and human DHODH. Our analysis suggests that these orotate derivatives should preferentially bind to TcDHODH, increasing their selectivity. Our results obtained by pharmacophore modeling provides insight into the structural requirements for the design of TcDHODH inhibitors and their development as new anti-Chagas drugs.  相似文献   
93.

Background

Osteopontin (OPN) is a multifunctional protein expressed in a variety of tissues and cells. Recent studies revealed increased OPN expression in the inflamed intestinal tissues of patients with inflammatory bowel disease (IBD). The role of OPN in the pathophysiology of IBD, however, remains unclear.

Aims

To investigate the role of OPN in the development of intestinal inflammation using a murine model of IBD, interleukin-10 knock out (IL-10 KO) mice.

Methods

We compared the development of colitis between IL-10 KO and OPN/IL-10 double KO (DKO) mice. OPN expression in the colonic tissues of IL-10 KO mice was examined by fluorescence in situ hybridization (FISH) analysis. Enteric microbiota were compared between IL-10 KO and OPN/IL-10 DKO mice by terminal restriction fragment length polymorphism analysis. The effect of OPN on macrophage phagocytic function was evaluated by phagocytosis assay.

Results

OPN/IL-10 DKO mice had an accelerated onset of colitis compared to IL-10 KO mice. FISH analysis revealed enhanced OPN synthesis in the colonic epithelial cells of IL-10 KO mice. OPN/IL-10 DKO mice had a distinctly different enteric bacterial profile with a significantly lower abundance of Clostridium subcluster XIVa and a greater abundance of Clostridium cluster XVIII compared to IL-10 KO mice. Intracellular OPN deletion in macrophages impaired phagocytosis of fluorescence particle-conjugated Escherichia coli in vitro. Exogenous OPN enhanced phagocytosis by OPN-deleted macrophages when administered at doses of 1 to 100 ng/ml, but not 1000 ng/ml.

Conclusions

OPN deficiency accelerated the spontaneous development of colitis in mice with disrupted gut microbiota and macrophage phagocytic activity.  相似文献   
94.
Differential posttranslational modification of proliferating cell nuclear antigen (PCNA) by ubiquitin or SUMO plays an important role in coordinating the processes of DNA replication and DNA damage tolerance. Previously it was shown that the loss of RAD6-dependent error-free postreplication repair (PRR) results in DNA damage checkpoint-mediated G2 arrest in cells exposed to chronic low-dose UV radiation (CLUV), whereas wild-type and nucleotide excision repair-deficient cells are largely unaffected. In this study, we report that suppression of homologous recombination (HR) in PRR-deficient cells by Srs2 and PCNA sumoylation is required for checkpoint activation and checkpoint maintenance during CLUV irradiation. Cyclin-dependent kinase (CDK1)-dependent phosphorylation of Srs2 did not influence checkpoint-mediated G2 arrest or maintenance in PRR-deficient cells but was critical for HR-dependent checkpoint recovery following release from CLUV exposure. These results indicate that Srs2 plays an important role in checkpoint-mediated reversible G2 arrest in PRR-deficient cells via two separate HR-dependent mechanisms. The first (required to suppress HR during PRR) is regulated by PCNA sumoylation, whereas the second (required for HR-dependent recovery following CLUV exposure) is regulated by CDK1-dependent phosphorylation.DNA damage occurs frequently in all organisms as a consequence of both endogenous metabolic processes and exogenous DNA-damaging agents. In nature, the steady-state level of DNA damage is usually very low. However, chronic low-level DNA damage can lead to age-related genome instability as a consequence of the accumulation of DNA damage (12, 27). Increasing evidence implicates DNA damage-related replication stress in genome instability (7, 21). Replication stress occurs when an active fork encounters DNA lesions or proteins tightly bound to DNA. These obstacles pose a threat to the integrity of the replication fork and are thus a potential source of genome instability, which can contribute to tumorigenesis and aging in humans (4, 11). Confronted with this risk, cells have developed fundamental DNA damage response mechanisms in order to faithfully complete DNA replication (8).In budding yeast Saccharomyces cerevisiae, the Rad6-dependent postreplication repair (PRR) pathway is subdivided into three subpathways, which allow replication to resume by bypassing the lesion without repairing the damage (3, 22, 33). Translesion synthesis (TLS) pathways dependent on the DNA polymerases eta and zeta promote error-free or mutagenic bypass depending on the DNA lesion and are activated upon monoubiquitination of proliferating cell nuclear antigen (PCNA) at Lys164 (K164) (5, 16, 37). The Rad5 (E3) and Ubc13 (E2)/Mms2 (E2 variant)-dependent pathway promotes error-free bypass by template switching and is activated by polyubiquitination of PCNA via a Lys63-linked ubiquitin chain (16, 38, 41). It remains mechanistically unclear how polyubiquitinated PCNA promotes template switching at the molecular level. In addition to its ubiquitin E3 activity, Rad5 also has a helicase domain and was recently shown to unwind and reanneal fork structures in vitro (6). This led to the proposal that Rad5 helicase activity is required at replication forks to promote fork regression and subsequent template switching. It is possible that PCNA polyubiquitination acts to facilitate Rad5-dependent template switching by inhibiting monoubiquitination-dependent TLS activity and/or by recruiting alternative proteins to the fork.In addition to modification by ubiquitin, PCNA can also be sumoylated on Lys164 by the SUMO E3 ligase Siz1 (16). A second sumoylation site, Lys127, is also targeted by an alternative SUMO E3 ligase, Siz2, albeit with lower efficiency (16, 30). PCNA SUMO modification results in recruitment of the Srs2 helicase and subsequent inhibition of Rad51-dependent recombination events (29, 32). The modification can therefore allow the replicative bypass of lesions by promoting the RAD6 pathway. Srs2 is known to act as an antirecombinase by eliminating recombination intermediates. This can occur independently of PCNA sumoylation, and when srs2Δ cells are UV irradiated or other antirecombinases, such as Sgs1, are concomitantly deleted, toxic recombination structures accumulate (1, 10). Such genetic data are consistent with the ability of Srs2 to disassemble the Rad51 nucleoprotein filaments formed on single-stranded DNA (ssDNA) in vitro (20, 40). In addition to directly inhibiting homologous recombination (HR), Srs2 is also involved in regulating HR outcomes to not produce crossover recombinants in the mitotic cell cycle (18, 34, 35).The UV spectrum present in sunlight is a primary environmental cause of exogenous DNA damage. Sunlight is a potent and ubiquitous carcinogen responsible for much of the skin cancer in humans (17). In the natural environment, organisms are exposed to chronic low-dose UV light (CLUV), as opposed to the acute high doses commonly used in laboratory experiments. Hence, understanding the cellular response to CLUV exposure is an important approach complementary to the more traditional laboratory approaches for clarifying the biological significance of specific DNA damage response pathways. A recently developed experimental assay for the analysis of CLUV-induced DNA damage responses was used to show that the PCNA polyubiquitination-dependent error-free PRR pathway plays a critical role in tolerance of CLUV exposure by preventing the generation of excessive ssDNA when replication forks arrest, thus suppressing counterproductive checkpoint activation (13).Mutants of SRS2 were first isolated by their ability to suppress the radiation sensitivity of rad6 and rad18 mutants (defective in PRR) by a mechanism that requires a functional HR pathway (23, 36). In this study, we analyzed the function of Srs2 in CLUV-exposed PRR-deficient cells. We established that Srs2 acts in conjunction with SUMO-modified PCNA to lower the threshold for checkpoint activation and maintenance by suppressing the function of HR in rad18Δ cells exposed to CLUV. We also showed that Srs2 is separately involved in an HR-dependent recovery process following cessation of CLUV exposure and that this second role for Srs2, unlike its primary role in checkpoint activation and maintenance, is regulated by CDK1-dependent phosphorylation. Thus, Srs2 is involved in both CLUV-induced checkpoint-mediated arrest and recovery from CLUV exposure in PRR-deficient cells, and these two functions, while both involving HR, are separable and thus independent.  相似文献   
95.
Screening of our library of peroxisome proliferator-activated receptor (PPAR) agonists yielded several phenylpropanoic acid-derived γ-secretase inhibitors (GSIs). Structure–activity relationship studies indicated that (R)-configuration of α-substituted phenylpropanoic acid structure and cinnamic acid structure is favorable to prepare Notch-sparing GSIs.  相似文献   
96.
The ligation reaction is widely used in molecular biology. There are several kits available that complete the ligation reaction very rapidly but they are rather expensive. In this study, we successfully modified the ligation buffer with much lower cost than existing kits. The ligation reaction can be completed in 10 min using very low activities such as 0.01 U T4 DNA ligase, and costs only $1 for 100 reactions of 20 μl scale. We name this ligation system the “Coffee Break Ligation” system; one can complete ligation reaction while drinking a cup of coffee, and perform 100 reactions by spending money equivalent to a cup of coffee.  相似文献   
97.
Porphyromonas gingivalis is considered an important pathogen in periodontal disease. While this organism expresses a number of virulence factors, no study combining different virulence polymorphisms has, so far, been conducted. The occurrence of combined virulence (Cv) genotypes in 62 isolates of P. gingivalis was investigated from subjects displaying either chronic periodontitis or periodontal abscess. The Cv genotypes, based on gene variation of fimbriae (fimA), Lys-specific cystein proteinase (kgp) and Arg-specific cystein proteinase (prpR1/rgpA), were evaluated by PCR. The isolates were also subjected to capsular polysaccharide K-serotyping. A total of 18 Cv genotype variants based on fimA: kgp: rgpA were identified, of which II:I:A and II:II:A Cv genotypes (53.3%) were the two most frequently detected combinations. Moreover, 36% of the isolates were K-typeable, with the K6 serotype being the most prevalent (23%). Two isolates had the same genotype as the virulent strain W83. The results indicate that chronic periodontitis is not associated with a particularly virulent clonal type. A highly virulent genotype (e.g. strain W83) of P. gingivalis can be found in certain periodontitis patients.  相似文献   
98.
99.
100.
In mammalian nucleotide excision repair, the DDB1–DDB2 complex recognizes UV-induced DNA photolesions and facilitates recruitment of the XPC complex. Upon binding to damaged DNA, the Cullin 4 ubiquitin ligase associated with DDB1–DDB2 is activated and ubiquitinates DDB2 and XPC. The structurally disordered N-terminal tail of DDB2 contains seven lysines identified as major sites for ubiquitination that target the protein for proteasomal degradation; however, the precise biological functions of these modifications remained unknown. By exogenous expression of mutant DDB2 proteins in normal human fibroblasts, here we show that the N-terminal tail of DDB2 is involved in regulation of cellular responses to UV. By striking contrast with behaviors of exogenous DDB2, the endogenous DDB2 protein was stabilized even after UV irradiation as a function of the XPC expression level. Furthermore, XPC competitively suppressed ubiquitination of DDB2 in vitro, and this effect was significantly promoted by centrin-2, which augments the DNA damage-recognition activity of XPC. Based on these findings, we propose that in cells exposed to UV, DDB2 is protected by XPC from ubiquitination and degradation in a stochastic manner; thus XPC allows DDB2 to initiate multiple rounds of repair events, thereby contributing to the persistence of cellular DNA repair capacity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号