首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   406篇
  免费   30篇
  2023年   2篇
  2022年   1篇
  2021年   13篇
  2020年   7篇
  2019年   15篇
  2018年   16篇
  2017年   16篇
  2016年   22篇
  2015年   21篇
  2014年   35篇
  2013年   41篇
  2012年   32篇
  2011年   39篇
  2010年   17篇
  2009年   16篇
  2008年   29篇
  2007年   21篇
  2006年   32篇
  2005年   15篇
  2004年   11篇
  2003年   17篇
  2002年   11篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
排序方式: 共有436条查询结果,搜索用时 15 毫秒
431.
Cluster 5 picocyanobacteria significantly contribute to primary productivity in aquatic ecosystems. Estuarine populations are highly diverse and consist of many co-occurring strains, but their physiology remains largely understudied. In this study, we characterized 17 novel estuarine picocyanobacterial strains. Phylogenetic analysis of the 16S rRNA and pigment genes (cpcB and cpeBA) uncovered multiple estuarine and freshwater-related clusters and pigment types. Assays with five representative strains (three phycocyanin rich and two phycoerythrin rich) under temperature (10–30°C), light (10–190 μmol photons m−2 s−1), and salinity (2–14 PSU) gradients revealed distinct growth optima and tolerance, indicating that genetic variability was accompanied by physiological diversity. Adaptability to environmental conditions was associated with differential pigment content and photosynthetic performance. Amplicon sequence variants at a coastal and an offshore station linked population dynamics with phylogenetic clusters, supporting that strains isolated in this study represent key ecotypes within the Baltic Sea picocyanobacterial community. The functional diversity found within strains with the same pigment type suggests that understanding estuarine picocyanobacterial ecology requires analysis beyond the phycocyanin and phycoerythrin divide. This new knowledge of the environmental preferences in estuarine picocyanobacteria is important for understanding and evaluating productivity in current and future ecosystems.  相似文献   
432.
433.
Perturbations in the transport of mitochondria and their quality control in neuronal cells underlie many types of neurological pathologies, whereas systems enabling convenient analysis of mitochondria behavior in cellular models of neurodegenerative diseases are limited. In this study, we present a modified version of lund human mesencephalic cells, mitoLUHMES, expressing GFP and mitochondrially targeted DsRed2 fluorescent proteins, intended for in vitro analysis of mitochondria trafficking by real-time fluorescence microscopy. This cell line can be easily differentiated into neuronal phenotype and allows us to observe movements of single mitochondria in single cells grown in high-density cultures. We quantified the perturbations in mitochondria morphology and dynamics in cells treated with model neurotoxins: carbonyl cyanide m-chlorophenylhydrazone and 6-hydroxydopamine. For the first time we filmed the processes of fission, fusion, pausing, and reversal of mitochondria movement direction in LUHMES cells. We present a detailed analysis of mitochondria length, velocity, and frequency of movement for static, anterograde, and retrograde motile mitochondria. The observed neurotoxin treatment-mediated decreases in morphological and kinetic parameters of mitochondria provide foundation for the future studies exploiting mitoLUHMES as a new model for neurobiology.  相似文献   
434.
The establishment of the nitrogen‐fixing symbiosis between soybean and Bradyrhizobium japonicum is a complex process. To document the changes in plant metabolism as a result of symbiosis, we utilized laser ablation electrospray ionization‐mass spectrometry (LAESI‐MS) for in situ metabolic profiling of wild‐type nodules, nodules infected with a B. japonicum nifH mutant unable to fix nitrogen, nodules doubly infected by both strains, and nodules formed on plants mutated in the stearoyl‐acyl carrier protein desaturase (sacpd‐c) gene, which were previously shown to have an altered nodule ultrastructure. The results showed that the relative abundance of fatty acids, purines, and lipids was significantly changed in response to the symbiosis. The nifH mutant nodules had elevated levels of jasmonic acid, correlating with signs of nitrogen deprivation. Nodules resulting from the mixed inoculant displayed similar, overlapping metabolic distributions within the sectors of effective (fix+) and ineffective (nifH mutant, fix?) endosymbionts. These data are inconsistent with the notion that plant sanctioning is cell autonomous. Nodules lacking sacpd‐c displayed an elevation of soyasaponins and organic acids in the central necrotic regions. The present study demonstrates the utility of LAESI‐MS for high‐throughput screening of plant phenotypes. Overall, nodules disrupted in the symbiosis were elevated in metabolites related to plant defense.  相似文献   
435.
436.
The impact of contaminated bottom sediments on plant growth and soil enzyme activities was evaluated in a greenhouse pot study. The sediments were moderately contaminated with zinc and heavily contaminated with polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and furans. The sediments were mixed with soil and planted with either Festuca arundinacea or Tagetes patula. The capacity of two rhizobacterial strains (Massilia niastensis P87 and Streptomyces costaricanus RP92), previously isolated from contaminated soils, to improve plant growth under the chemical stress was tested. Application of sediments to soil was severely phytotoxic to T. patula and mildly to F. arundinacea. On the other hand, the addition of sediments enhanced the soil enzymatic activity. Inoculation with both bacterial strains significantly increased shoot (up to 2.4-fold) and root (up to 3.4-fold) biomass of T. patula. The study revealed that the selected plant growth-promoting bacterial strains were able to alleviate phytotoxicity of bottom sediments to T. patula resulting from the complex character of the contamination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号