首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1187篇
  免费   53篇
  国内免费   1篇
  2023年   2篇
  2022年   7篇
  2021年   36篇
  2020年   19篇
  2019年   25篇
  2018年   33篇
  2017年   31篇
  2016年   35篇
  2015年   55篇
  2014年   79篇
  2013年   93篇
  2012年   136篇
  2011年   113篇
  2010年   53篇
  2009年   59篇
  2008年   68篇
  2007年   61篇
  2006年   46篇
  2005年   38篇
  2004年   32篇
  2003年   20篇
  2002年   26篇
  2001年   11篇
  2000年   9篇
  1999年   7篇
  1997年   5篇
  1996年   6篇
  1995年   8篇
  1994年   5篇
  1993年   4篇
  1992年   2篇
  1991年   7篇
  1990年   2篇
  1989年   8篇
  1988年   8篇
  1987年   10篇
  1986年   7篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1980年   5篇
  1979年   11篇
  1978年   3篇
  1977年   10篇
  1976年   5篇
  1975年   7篇
  1974年   3篇
  1970年   4篇
排序方式: 共有1241条查询结果,搜索用时 562 毫秒
41.
Chromosomal damage was detected previously in the recBCD mutants of the Antarctic bacterium Pseudomonas syringae Lz4W, which accumulated linear chromosomal DNA leading to cell death and growth inhibition at 4°C. RecBCD protein generally repairs DNA double‐strand breaks by RecA‐dependent homologous recombination pathway. Here we show that ΔrecA mutant of P. syringae is not cold‐sensitive. Significantly, inactivation of additional DNA repair genes ruvAB rescued the cold‐sensitive phenotype of ΔrecBCD mutant. The ΔrecA and ΔruvAB mutants were UV‐sensitive as expected. We propose that, at low temperature DNA replication encounters barriers leading to frequent replication fork (RF) arrest and fork reversal. RuvAB binds to the reversed RFs (RRFs) having Holliday junction‐like structures and resolves them upon association with RuvC nuclease to cause linearization of the chromosome, a threat to cell survival. RecBCD prevents this by degrading the RRFs, and facilitates replication re‐initiation. This model is consistent with our observation that low temperature‐induced DNA lesions do not evoke SOS response in P. syringae. Additional studies show that two other repair genes, radA (encoding a RecA paralogue) and recF are not involved in providing cold resistance to the Antarctic bacterium.  相似文献   
42.
Plasmodium vivax is the most widely distributed human parasite and the main cause of human malaria outside the African continent. However, the knowledge about the genetic variability of P. vivax is limited when compared to the information available for P. falciparum. We present the results of a study aimed at characterizing the genetic structure of P. vivax populations obtained from pregnant women from different malaria endemic settings. Between June 2008 and October 2011 nearly 2000 pregnant women were recruited during routine antenatal care at each site and followed up until delivery. A capillary blood sample from the study participants was collected for genotyping at different time points. Seven P. vivax microsatellite markers were used for genotypic characterization on a total of 229 P. vivax isolates obtained from Brazil, Colombia, India and Papua New Guinea. In each population, the number of alleles per locus, the expected heterozygosity and the levels of multilocus linkage disequilibrium were assessed. The extent of genetic differentiation among populations was also estimated. Six microsatellite loci on 137 P. falciparum isolates from three countries were screened for comparison. The mean value of expected heterozygosity per country ranged from 0.839 to 0.874 for P. vivax and from 0.578 to 0.758 for P. falciparum. P. vivax populations were more diverse than those of P. falciparum. In some of the studied countries, the diversity of P. vivax population was very high compared to the respective level of endemicity. The level of inter-population differentiation was moderate to high in all P. vivax and P. falciparum populations studied.  相似文献   
43.
The telomeric G‐quadruplexes for their unique structural features are considered as potential anticancer drug targets. These, however, exhibit structural polymorphism as different topology types for the intra‐molecular G‐quadruplexes from human telomeric G‐rich sequences have been reported based on NMR spectroscopy and X‐ray crystallography. These techniques provide detailed atomic‐level information about the molecule but relative conformational stability of the different topologies remains unsolved. Therefore, to understand the conformational preference, we have carried out quantum chemical calculations on G‐quartets; used all‐atom molecular dynamics (MD) simulations and steered molecular dynamics (SMD) simulations to characterize the four human telomeric G‐quadruplex topologies based on its G‐tetrad core‐types, viz., parallel, anti‐parallel, mixed‐(3 + 1)‐form1 and mixed‐(3 + 1)‐form2. We have also studied a non‐telomeric sequence along with these telomeric forms giving a comparison between the two G‐rich forms. The structural properties such as base pairing, stacking geometry and backbone conformations have been analyzed. The quantum calculations indicate that presence of a sodium ion inside the G‐tetrad plane or two potassium ions on both sides of the plane give it an overall planarity which is much needed for good stacking to form a helix. MD simulations indicate that capping of the G‐tetrad core by the TTA loops keep the terminal guanine bases away from water. The SMD simulations along with equilibrium MD studies indicate that the parallel and non‐telomeric forms are comparatively less stable. We could come to the conclusion that the anti‐parallel form and also the mixed‐(3 + 1)‐form1 topology are most likely to represent the major conformation., 2016. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 83–99, 2016  相似文献   
44.
45.
46.
Hyperglycaemia in diabetes is either caused by reduced availability of insulin (type 1 diabetes, T1D) or insulin resistance to the cells (type 2 diabetes, T2D). In recent years, the prevalence of T2D has increased to an alarming proportion, encompassing 95% of the total diabetic burden, probably due to economy-driven changes in lifestyle. Recent epidemiological studies show comorbid depression, anxiety and related mental illness. To explore the molecular mechanisms underlying this comorbid conditions, we used Sprague–Dawley rats on high-fructose diet for 8 weeks to induce prediabetic condition. Rats with this metabolic syndrome also showed hyper-anxiety when they were subjected to anxiety-related behavioural assays. Rats were administered with resveratrol, an activator of sirtuins, and metformin, a standard antidiabetic drug, simultaneously with fructose. We observed that resveratrol was more effective in protecting from both the metabolic (prediabetic) and affective (anxiety) disorders than metformin. Molecular studies showed that recovery was associated with the upregulation of few nuclear sirtuins that act epigenetically – Sirt 1 and 7, which were significantly attenuated in the striatum of prediabetic rats. In conclusion, our study showed that hyper-anxiety associated with prediabetic condition is ameliorated by resveratrol through modulation of sirtuins, which is more or less similar to metformin.  相似文献   
47.
The thermostable bifunctional CMCase and xylanase encoding gene (rBhcell-xyl) from Bacillus halodurans TSLV1 has been expressed in Escherichia coli. The recombinant E. coli produced rBhcell-xyl (CMCase 2272 and 910 U L?1 xylanase). The rBhcell-xyl is a ~62-kDa monomeric protein with temperature and pH optima of 60 °C and 6.0 with T1/2 of 7.0 and 3.5 h at 80 °C for CMCase and xylanase, respectively. The apparent K m values (CMC and Birchwood xylan) are 3.8 and 3.2 mg mL?1. The catalytic efficiency (k cat/K m ) values of xylanase and CMCase are 657 and 171 mL mg?1 min?1, respectively. End-product analysis confirmed that rBhcell-xyl is a unique endo-acting enzyme with exoglucanase activity. The rBhcell-xyl is a GH5 family enzyme possessing single catalytic module and carbohydrate binding module. The action of rBhcell-xyl on corn cobs and wheat bran liberated reducing sugars, which can be fermented to bioethanol and fine biochemicals.  相似文献   
48.
Many bacteria used for biotechnological applications are naturally motile. Their "bio-nanopropeller" driven movement allows searching for better environments in a process called chemotaxis. Since bacteria are extremely small in size compared to the bulk fluid volumes in bioreactors, single cell motility is not considered to influence bioreactor operations. However, with increasing interest in localized fluid flow inside reactors, it is important to ask whether individual motility characteristics of bacteria are important in bioreactor operations. The first step in this direction is to try to correlate single cell measurements with population data of motile bacteria in a bioreactor. Thus, we observed the motility behavior of individual bacterial cells, using video microscopy with 33 ms time resolution, as a function of population growth dynamics of batch cultures in shake flasks. While observing the motility behavior of the most intensively studied bacteria, Escherichia coli, we find that overall bacterial motility decreases with progression of the growth curve. Remarkably, this is due to a decrease in a specific motility behavior called "running". Our results not only have direct implications on biofilm formations, but also provide a new direction in bioprocess design research highlighting the role of individual bacterial cell motility as an important parameter.  相似文献   
49.
While cannabinoids are secondary metabolites synthesized by just a few plant species, N-acylethanolamines (NAEs) are distributed widely in the plant kingdom, and are recovered in measurable, bioactive quantities in many plant-derived products. NAEs in higher plants are ethanolamides of fatty acids with acyl-chain lenghts of C12-C(18) and zero to three C=C bonds. Generally, the most-abundant NAEs found in plants and vertebrates are similar, including NAE 16 : 0, 18 : 1, 18 : 2, and 18 : 3. Like in animal systems, NAEs are formed in plants from N-acylphosphatidylethanolamines (NAPEs), and they are hydrolyzed by an amidase to yield ethanolamine and free fatty acids (FFA). Recently, a homologue of the mammalian fatty acid amide hydrolase (FAAH-1) was identified in Arabidopsis thaliana and several other plant species. Overexpression of Arabidopsis FAAH (AtFAAH) resulted in plants that grew faster, but were more sensitive to biotic and abiotic insults, suggesting that the metabolism of NAEs in plants resides at the balance between growth and responses to environmental stresses. Similar to animal systems, exogenously applied NAEs have potent and varied effects on plant cells. Recent pharmacological approaches combined with molecular-genetic experiments revealed that NAEs may act in certain plant tissues via specific membrane-associated proteins or by interacting with phospholipase D-alpha, although other, direct targets for NAE action in plants are likely to be discovered. Polyunsaturated NAEs can be oxidized via the lipoxygenase pathway in plants, producing an array of oxylipin products that have received little attention so far. Overall, the conservation of NAE occurrence and metabolic machinery in plants, coupled with the profound physiological effects of elevating NAE content or perturbing endogenous NAE metabolism, suggest that an NAE-mediated regulatory pathway, sharing similarities with the mammalian endocannabinoid pathway, indeed exists.  相似文献   
50.
Skeletal muscle atrophy/wasting is associated with impaired protein metabolism in diverse physiological and pathophysiological conditions. Elevated levels of reactive oxygen species (ROS), disturbed redox status, and weakened antioxidant defense system are the major contributing factors toward atrophy. Regulation of protein metabolism by controlling ROS levels and its associated catabolic pathways may help in treating atrophy and related clinical conditions. Although cinnamaldehyde (CNA) enjoys the established status of antioxidant and its role in ROS management is reported, impact of CNA on skeletal muscle atrophy and related pathways is still unexplored. In the current study, the impact of CNA on C2C12 myotubes and the possible protection of cultured cells from H 2O 2-induced atrophy is examined. Myotubes were treated with H 2O 2 in the presence and absence of CNA and the changes in the antioxidative, proteolytic systems, and mitochondrial functions were scored. Morphological analysis showed significant protective effects of CNA on length, diameter, and nuclei fusion index of myotubes. The evaluation of biochemical markers of atrophy; creatine kinase, lactate dehydrogenase, succinate dehydrogenase along with the study of muscle-specific structural protein (i.e., myosin heavy chain-fast [MHCf] type) showed significant protection of proteins by CNA. CNA pretreatment not only checked the activation of proteolytic systems (ubiquitin-proteasome E3-ligases [MuRF1/Atrogin1]), autophagy [Beclin1/LC3B], cathepsin L, calpain, caspase), but also prevented any alteration in the activities of antioxidative defense enzymes (catalase, glutathione- S-transferase, glutathione-peroxidase, superoxide dismutase, glutathione reductase). The results suggest that CNA protects myotubes from H 2O 2-induced atrophy by inhibiting/resisting the amendments in proteolytic systems and maintains cellular redox-balance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号