首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   5篇
  2023年   2篇
  2022年   3篇
  2021年   7篇
  2020年   5篇
  2019年   4篇
  2018年   9篇
  2017年   6篇
  2016年   9篇
  2015年   8篇
  2014年   7篇
  2013年   6篇
  2012年   15篇
  2011年   9篇
  2010年   11篇
  2009年   7篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   6篇
  2004年   1篇
  2003年   7篇
  2002年   7篇
  2001年   1篇
  2000年   2篇
  1999年   5篇
  1998年   3篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1986年   1篇
排序方式: 共有166条查询结果,搜索用时 78 毫秒
101.
Heavy metal contamination of agricultural soils has increased along with industrialization. Mercury is a toxic heavy metal and a widespread pollutant in the ecosystem. Mercury-tolerant and plant growth-promoting rhizobacteria (PGPR) HG 1, HG 2, and HG 3 were isolated from the rhizosphere of plants growing in a mercury-contaminated site. These isolates were able to grow in the presence of mercury ranging from 10 to 200 µM in minimal medium and 25 to 500 µM in LB medium. The strains were characterized by morphological, biochemical, and plant growth-promoting traits. In the present study, these PGPR strains were analyzed for their involvement in metal stress tolerance in Triticum aestivum (wheat). Two bacterial strains, namely, Enterobacter ludwigii (HG 2) and Klebsiella pneumoniae (HG 3), showed better growth promotion of T. aestivum seedlings under metal stress. Different growth parameters like, water content and biochemical properties were analyzed in the PGPR-inoculated wheat plants under 75 µM HgCl2. Shoot length, root length, shoot dry weight, root dry weight and relative water content (RWC) were significantly higher in inoculated plants compared to uninoculated plants under stress condition. Proline content, electrolyte leakage, and malondialdehyde content (shoots and roots) were significantly lower in inoculated plants with respect to uninoculated plants under mercury stress. Therefore, it could be assumed that all these parameters collectively improve plant growth under mercury stress conditions in the presence of PGPR. Hence, these PGPRs can serve as promising candidates for increasing plant growth and also have immense potential for bioremediation of mercury-contaminated soils.  相似文献   
102.
103.
Potato is the fourth main crop consumed worldwide and is an important constituent in the human diet. Consequently, potato is widely used in food-processing industries. However, these industries generate massive amounts of potato peel (PP) as a by-product, which is usually considered a waste, and is discarded. Interestingly, recent research suggests that PP is a valuable source of bioactive compounds, which can be converted into value-added products. In this study, we review the physicochemical composition and valorization of PP. In addition to being used as a dietary fiber or medicine, the value-added products obtained by the fermentation of PP have multiple uses, including their use as adsorbents, biocomposites and packaging materials. These products can also be used in energy production, biopolymer film development, corrosion inhibition and the synthesis of cellulose nanocrystals. The biorefinery approach for PP will increase the value of this waste by producing an array of value-added products and reducing extensive waste generation.  相似文献   
104.
A process for maximizing the volumetric productivity of recombinant ovine growth hormone (r-oGH) expressed in Escherichia coli during high cell density fermentation process has been devised. Kinetics of r-oGH expression as inclusion bodies and its effect on specific growth rates of E. coli cells were monitored during batch fermentation process. It was observed that during r-oGH expression in E. coli, the specific growth rate of the culture became an intrinsic property of the cells which reduced in a programmed manner upon induction. Nutrient feeding during protein expression phase of the fed-batch process was designed according to the reduction in specific growth rate of the culture. By feeding yeast extract along with glucose during fed-batch operation, high cell growth with very little accumulation of acetic acid was observed. Use of yeast extract helped in maintaining high specific cellular protein yield which resulted in high volumetric productivity of r-oGH. In 16 h of fed-batch fermentation, 3.2 g l-1 of r-oGH were produced at a cell OD of 124. This is the highest concentration of r-oGH reported to date using E. coli expression system. The volumetric productivity of r-oGH was 0.2 g l-1 h-1, which is also the highest value reported for any therapeutic protein using IPTG inducible expression system in a single stage fed-batch process.  相似文献   
105.
Cellular imbalance in the levels of antioxidants and reactive oxygen species (ROS) is directly associated with a number of pathological states and results in programmed cell death or apoptosis. We demonstrate the use ofin vitro culturedSpodoptera frugiperda (sf9) insect cells as a model to study oxidative stress induced programmed cell death. Apoptosis ofin vitro cultured sf9 cells was induced by the exogenous treatment of H2O2 to cells growing in culture. The AD50 (concentration of H2O2 inducing about 50% apoptotic response) varied with the duration of treatment, batch to batch variation of H2O2 and the physiological state of cells. At 24 h post-treatment with H2O2 AD50 was about 475 Μm. Apoptosis could also be induced byin situ generation of H2O2 by the inhibition of catalase activity upon hydroxylamine treatment. Hydroxylamine acted synergistically with H2O2 with an AD50 of 2.2 mM. DMSO, a free radical scavenger, inhibited H2O2-induced apoptosis thereby confirming the involvement of reactive oxygen species. Exposure of cells to UV radiation (312 nm) resulted in a dose-dependent induction of apoptosis. These results provide evidence on the novel use of insect cells as a model for oxidative stress-induced apoptosis.  相似文献   
106.
Previously we have reported that, cycloart-23-ene-3β, 25-diol (called as B2) and L-glutamine stimulated glucagon like peptide-1 (GLP-1) (7–36) amide secretion diabetic rats. The objective of present investigation was to investigate the concomitant administration of cycloart-23-ene-3β, 25-diol+sitagliptin and L-glutamine+sitagliptin in streptozotocin - nicotinamide induced diabetic Sprague Dawley. Type 2 diabetes was induced in overnight fasted male Sprague Dawley rats pre-treated with nicotinamide (100 mg/kg, i.p.) followed by administration of streptozotocin (55 mg/kg, i.p.) 20 min after. The rats were divided into; I- non-diabetic, II- diabetic control, III- Sitagliptin (5 mg/kg, p.o.)+cycloart-23-ene-3β, 25-diol (1 mg/kg, p.o.), IV- Sitagliptin (5 mg/kg, p.o.)+L-glutamine (1000 mg/kg, p.o.). The concomitant treatment of cycloart-23-ene-3β, 25-diol and L-glutamine with sitagliptin was 8 weeks. Plasma glucose, body weight, food and water intake were determined every week. Glycosylated haemoglobin, lipid profile, plasma and colonic active (GLP-1) (7–36) amide, plasma and pancreatic insulin, histology of pancreata and biomarkers of oxidative stress were measured after 8th week treatment. Concomitant administration of cycloart-23-ene-3β, 25-diol and L-glutamine with sitagliptin significantly (p<0.001) reduced plasma glucose, glyoxylated haemoglobin, lipid profile and oxidative stress parameters compared to diabetic control groups. Both concomitant treatment increased plasma and pancreatic insulin as well as plasma and colonic active (GLP-1) (7–36) amide secretion. Histological analysis by Gomori staining observed less destruction of pancreatic β cells. The result obtained from this study; it is concluded that concomitant administration of cycloart-23-ene-3β, 25-diol+sitagliptin and L-glutamine+sitagliptin showed additive antihyperglycaemic effect in diabetic rats.  相似文献   
107.
108.
The type 2 diabetes is one of the major global health issues that affects millions of people. This study evaluated the antidiabetic activity of aqueous extracts (AECP) and methanol extracts (MECP) from Ceiba pentandra trunk bark on an experimental model of type 2 diabetes (T2D). This model was induced in rats by the combination of a high-fat diet (HFD) and a single dose of streptozotocin (40 mg/kg, intraperitoneal) at the seventh day of experimentation. Diabetes was confirmed on day 10 by fasting blood glucose more than or equal to 200 mg/dL. Diabetic animals still under HFD were treated orally and twice daily, with MECP and AECP (75 and 150 mg/kg) or metformin (40 mg/kg) for 14 days. During the experiment, blood glucose and animal weights were determined. Oral glucose tolerance test was performed on day 15, followed by animals sacrifice for blood, liver, and pancreas collection. Total cholesterol and triglyceride levels were evaluated in plasma, whereas malondialdehyde (MDA), glutathione (GSH), superoxide dismutase, and catalase were quantified in tissue homogenates. AECP and MECP significantly reduced the hyperglycemia by up to 62% and significantly improved the oral glucose tolerance test. The impaired levels of cholesterol and triglycerides registered in diabetic control were significantly reversed by both extracts at all the doses used. Alterations in diabetic pancreas weight, GSH, and MDA were also significantly reversed by plant extracts. AECP and MECP possess type 2 antidiabetic effects that could result from their ability to improve the peripheral use of glucose, lipid metabolism or from their capacity to reduce oxidative stress. These finding provide a new avenue for better control and management of early or advanced T2D.  相似文献   
109.
Unigene sequence in public database provides a cost-effective and valuable source, for the development of microsatellite markers also known as unigene-derived microsatellite (UGMS) markers. In our study, genetic variation among 24 Phytophthora nicotianae isolates from five major citrus growing states of India were analysed through UGMS markers. Morphological and clustering results indicated variation among these Phytophthora nicotianae were independent of its geographical confinement and showed 62.27% polymorphism. The study also validated the potential use of UGMS markers.  相似文献   
110.
The endoplasmic reticulum (ER) is a membrane-bound organelle responsible for protein folding, lipid synthesis, and calcium homeostasis. Maintenance of ER structural integrity is crucial for proper function, but much remains to be learned about the molecular players involved. To identify proteins that support the structure of the ER, we performed a proteomic screen and identified nodal modulator (NOMO), a widely conserved type I transmembrane protein of unknown function, with three nearly identical orthologs specified in the human genome. We found that overexpression of NOMO1 imposes a sheet morphology on the ER, whereas depletion of NOMO1 and its orthologs causes a collapse of ER morphology concomitant with the formation of membrane-delineated holes in the ER network positive for the lysosomal marker lysosomal-associated protein 1. In addition, the levels of key players of autophagy including microtubule-associated protein light chain 3 and autophagy cargo receptor p62/sequestosome 1 strongly increase upon NOMO depletion. In vitro reconstitution of NOMO1 revealed a “beads on a string” structure likely representing consecutive immunoglobulin-like domains. Extending NOMO1 by insertion of additional immunoglobulin folds results in a correlative increase in the ER intermembrane distance. Based on these observations and a genetic epistasis analysis including the known ER-shaping proteins Atlastin2 and Climp63, we propose a role for NOMO1 in the functional network of ER-shaping proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号