首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   15篇
  2021年   2篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   8篇
  2013年   11篇
  2012年   4篇
  2011年   7篇
  2010年   4篇
  2009年   6篇
  2008年   8篇
  2007年   11篇
  2006年   8篇
  2005年   13篇
  2004年   14篇
  2003年   16篇
  2002年   13篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   5篇
  1997年   4篇
  1996年   1篇
  1995年   4篇
  1994年   7篇
  1993年   7篇
  1992年   3篇
  1991年   2篇
  1989年   2篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
  1968年   1篇
  1934年   1篇
  1929年   1篇
排序方式: 共有195条查询结果,搜索用时 15 毫秒
21.
Human EAT-2 (SH2D1B) and SLAM-associated protein (SAP) (SH2D1A) are single SH2-domain adapters, which bind to specific tyrosine residues in the cytoplasmic tail of six signaling lymphocytic activation molecule (SLAM) (SLAMF1)-related receptors. Here we report that, unlike in humans, the mouse and rat Eat2 genes are duplicated with an identical genomic organization. The coding regions of the mouse Eat2a and Eat2b genes share 91% identity at the nucleotide level and 84% at the protein level; similarly, segments of introns are highly conserved. Whereas expression of mouse Eat2a mRNA was detected in multiple tissues, Eat2b was only detectable in mouse natural killer cells, CD8+ T cells, and ovaries, suggesting a very restricted tissue expression of the latter. Both the EAT-2A and EAT-2B coimmunoprecipitated with mouse SLAM in transfected cells and augmented tyrosine phosphorylation of the cytoplasmic tail of SLAM. Both EAT-2A and EAT-2B bind to the Src-like kinases Fyn, Hck, Lyn, Lck, and Fgr, as determined by a yeast two-hybrid assay. However, unlike SAP, the EAT-2 proteins bind to their kinase domains and not to the SH3 domain of these kinases. Taken together, the data suggest that both EAT-2A and EAT-2B are adapters that recruit Src kinases to SLAM family receptors using a mechanism that is distinct from that of SAP. Electronic supplementary material Supplementary material is available for this article at and accessible for authorised users. S. Calpe and E. Erdős contributed equally to this work  相似文献   
22.
Thermophily is thought to be a primitive trait, characteristic of early forms of life on Earth, that has been gradually lost over evolutionary time. The genus Bacillus provides an ideal model for studying the evolution of thermophily as it is an ancient taxon and its contemporary species inhabit a range of thermal environments. The thermostability of reconstructed ancestral proteins has been used as a proxy for ancient thermal adaptation. The reconstruction of ancestral "enzymes" has the added advantages of demonstrable activity, which acts as an internal control for accurate inference, and providing insights into the evolution of enzymatic catalysis. Here, we report the reconstruction of the structurally complex core metabolic enzyme LeuB (3-isopropylmalate dehydrogenase, E. C. 1.1.1.85) from the last common ancestor (LCA) of Bacillus using both maximum likelihood (ML) and Bayesian inference. ML LeuB from the LCA of Bacillus shares only 76% sequence identity with its closest contemporary homolog, yet it is fully functional, thermophilic, and exhibits high values for k(cat), k(cat)/K(M), and ΔG(?) for unfolding. The Bayesian version of this enzyme is also thermophilic but exhibits anomalous catalytic kinetics. We have determined the 3D structure of the ML enzyme and found that it is more closely aligned with LeuB from deeply branching bacteria, such as Thermotoga maritima, than contemporary Bacillus species. To investigate the evolution of thermophily, three descendents of LeuB from the LCA of Bacillus were also reconstructed. They reveal a fluctuating trend in thermal evolution, with a temporal adaptation toward mesophily followed by a more recent return to thermophily. Structural analysis suggests that the determinants of thermophily in LeuB from the LCA of Bacillus and the most recent ancestor are distinct and that thermophily has arisen in this genus at least twice via independent evolutionary paths. Our results add significant fluctuations to the broad trend in thermal adaptation previously proposed and demonstrate that thermophily is not exclusively a primitive trait, as it can be readily gained as well as lost. Our findings also demonstrate that reconstruction of complex functional Precambrian enzymes is possible and can provide empirical access to the evolution of ancient phenotypes and metabolisms.  相似文献   
23.
24.
25.
Studies of protein N‐glycosylation are important for answering fundamental questions on the diverse functions of glycoproteins in plant growth and development. Here we generated and characterised a comprehensive collection of Lotus japonicusLORE1 insertion mutants, each lacking the activity of one of the 12 enzymes required for normal N‐glycan maturation in the glycosylation machinery. The inactivation of the individual genes resulted in altered N‐glycan patterns as documented using mass spectrometry and glycan‐recognising antibodies, indicating successful identification of null mutations in the target glyco‐genes. For example, both mass spectrometry and immunoblotting experiments suggest that proteins derived from the α1,3‐fucosyltransferase (Lj3fuct) mutant completely lacked α1,3‐core fucosylation. Mass spectrometry also suggested that the Lotus japonicus convicilin 2 was one of the main glycoproteins undergoing differential expression/N‐glycosylation in the mutants. Demonstrating the functional importance of glycosylation, reduced growth and seed production phenotypes were observed for the mutant plants lacking functional mannosidase I, N‐acetylglucosaminyltransferase I, and α1,3‐fucosyltransferase, even though the relative protein composition and abundance appeared unaffected. The strength of our N‐glycosylation mutant platform is the broad spectrum of resulting glycoprotein profiles and altered physiological phenotypes that can be produced from single, double, triple and quadruple mutants. This platform will serve as a valuable tool for elucidating the functional role of protein N‐glycosylation in plants. Furthermore, this technology can be used to generate stable plant mutant lines for biopharmaceutical production of glycoproteins displaying relative homogeneous and mammalian‐like N‐glycosylation features.  相似文献   
26.
Herpes simplex virus (HSV) type 1 and 2 are old viruses, with a history of evolution shared with humans. Thus, it is generally well-adapted viruses, infecting many of us without doing much harm, and with the capacity to hide in our neurons for life. In rare situations, however, the primary infection becomes generalized or involves the brain. Normally, the primary HSV infection is asymptomatic, and a crucial element in the early restriction of virus replication and thus avoidance of symptoms from the infection is the concerted action of different arms of the innate immune response. An early and light struggle inhibiting some HSV replication will spare the host from the real war against huge amounts of virus later in infection. As far as such a war will jeopardize the life of the host, it will be in both interests, including the virus, to settle the conflict amicably. Some important weapons of the unspecific defence and the early strikes and beginning battle during the first days of a HSV infection are discussed in this review. Generally, macrophages are orchestrating a multitude of anti-herpetic actions during the first hours of the attack. In a first wave of responses, cytokines, primarily type I interferons (IFN) and tumour necrosis factor are produced and exert a direct antiviral effect and activate the macrophages themselves. In the next wave, interleukin (IL)-12 together with the above and other cytokines induce production of IFN-γ in mainly NK cells. Many positive feed-back mechanisms and synergistic interactions intensify these systems and give rise to heavy antiviral weapons such as reactive oxygen species and nitric oxide. This results in the generation of an alliance against the viral enemy. However, these heavy weapons have to be controlled to avoid too much harm to the host. By IL-4 and others, these reactions are hampered, but they are still allowed in foci of HSV replication, thus focusing the activity to only relevant sites. So, no hero does it alone. Rather, an alliance of cytokines, macrophages and other cells seems to play a central role. Implications of this for future treatment modalities are shortly considered.  相似文献   
27.

Purpose

We tested the hypothesis that expression of microRNAs (miRNAs) in cancer tissue can predict effectiveness of bevacizumab added to capecitabine and oxaliplatin (CAPEOX) in patients with metastatic colorectal cancer (mCRC).

Experimental Design

Patients with mCRC treated with first line CAPEOX and bevacizumab (CAPEOXBEV): screening (n = 212) and validation (n = 121) cohorts, or CAPEOX alone: control cohort (n = 127), were identified retrospectively and archival primary tumor samples were collected. Expression of 754 miRNAs was analyzed in the screening cohort using polymerase chain reaction (PCR) arrays and expression levels were related to time to disease progression (TTP) and overall survival (OS). Significant miRNAs from the screening study were analyzed in all three cohorts using custom PCR arrays. In situ hybridization (ISH) was done for selected miRNAs.

Results

In the screening study, 26 miRNAs were significantly correlated with outcome in multivariate analyses. Twenty-two miRNAs were selected for further study. Higher miR-664-3p expression and lower miR-455-5p expression were predictive of improved outcome in the CAPEOXBEV cohorts and showed a significant interaction with bevacizumab effectiveness. The effects were strongest for OS. Both miRNAs showed high expression in stromal cells. Higher expression of miR-196b-5p and miR-592 predicted improved outcome regardless of bevacizumab treatment, with similar effect estimates in all three cohorts.

Conclusions

We have identified potentially predictive miRNAs for bevacizumab effectiveness and additional miRNAs that could be related to chemotherapy effectiveness or prognosis in patients with mCRC. Our findings need further validation in large cohorts, preferably from completed randomized trials.  相似文献   
28.

Background

CCL21 acting through CCR7, is termed a homeostatic chemokine. Based on its role in concerting immunological responses and its proposed involvement in tissue remodeling, we hypothesized that this chemokine could play a role in myocardial remodeling during left ventricular (LV) pressure overload.

Methods and Results

Our main findings were: (i) Serum levels of CCL21 were markedly raised in patients with symptomatic aortic stenosis (AS, n = 136) as compared with healthy controls (n = 20). (ii) A CCL21 level in the highest tertile was independently associated with all-cause mortality in these patients. (iii) Immunostaining suggested the presence of CCR7 on macrophages, endothelial cells and fibroblasts within calcified human aortic valves. (iv). Mice exposed to LV pressure overload showed enhanced myocardial expression of CCL21 and CCR7 mRNA, and increased CCL21 protein levels. (v) CCR7−/− mice subjected to three weeks of LV pressure overload had similar heart weights compared to wild type mice, but increased LV dilatation and reduced wall thickness.

Conclusions

Our studies, combining experiments in clinical and experimental LV pressure overload, suggest that CCL21/CCR7 interactions might be involved in the response to pressure overload secondary to AS.  相似文献   
29.
Chlamydia trachomatis is an obligate intracellular bacterium that causes severe infections, which can lead to infertility and ectopic pregnancy. Although both innate and adaptive immune responses are elicited during chlamydial infection the bacterium succeeds to evade host defense mechanisms establishing chronic infections. Thus, studying the host–pathogen interaction during chlamydial infection is of importance to understand how C. trachomatis can cause chronic infections. Both the complement system and monocytes play essential roles in anti-bacterial defense, and, therefore, we investigated the interaction between the complement system and the human pathogens C. trachomatis D and L2.Complement competent serum facilitated rapid uptake of both chlamydial serovars into monocytes. Using immunoelectron microscopy, we showed that products of complement C3 were loosely deposited on the bacterial surface in complement competent serum and further characterization demonstrated that the deposited C3 product was the opsonin iC3b. Using C3-depleted serum we confirmed that complement C3 facilitates rapid uptake of chlamydiae into monocytes in complement competent serum. Complement facilitated uptake did not influence intracellular survival of C. trachomatis or C. trachomatis-induced cytokine secretion. Hence, C. trachomatis D and L2 activate the complement system leading to chlamydial opsonization by iC3b and subsequent phagocytosis, activation and bacterial elimination by human monocytes.  相似文献   
30.
In vertebrates, the presence of viral RNA in the cytosol is sensed by members of the RIG‐I‐like receptor (RLR) family, which signal to induce production of type I interferons (IFN). These key antiviral cytokines act in a paracrine and autocrine manner to induce hundreds of interferon‐stimulated genes (ISGs), whose protein products restrict viral entry, replication and budding. ISGs include the RLRs themselves: RIG‐I, MDA5 and, the least‐studied family member, LGP2. In contrast, the IFN system is absent in plants and invertebrates, which defend themselves from viral intruders using RNA interference (RNAi). In RNAi, the endoribonuclease Dicer cleaves virus‐derived double‐stranded RNA (dsRNA) into small interfering RNAs (siRNAs) that target complementary viral RNA for cleavage. Interestingly, the RNAi machinery is conserved in mammals, and we have recently demonstrated that it is able to participate in mammalian antiviral defence in conditions in which the IFN system is suppressed. In contrast, when the IFN system is active, one or more ISGs act to mask or suppress antiviral RNAi. Here, we demonstrate that LGP2 constitutes one of the ISGs that can inhibit antiviral RNAi in mammals. We show that LGP2 associates with Dicer and inhibits cleavage of dsRNA into siRNAs both in vitro and in cells. Further, we show that in differentiated cells lacking components of the IFN response, ectopic expression of LGP2 interferes with RNAi‐dependent suppression of gene expression. Conversely, genetic loss of LGP2 uncovers dsRNA‐mediated RNAi albeit less strongly than complete loss of the IFN system. Thus, the inefficiency of RNAi as a mechanism of antiviral defence in mammalian somatic cells can be in part attributed to Dicer inhibition by LGP2 induced by type I IFNs. LGP2‐mediated antagonism of dsRNA‐mediated RNAi may help ensure that viral dsRNA substrates are preserved in order to serve as targets of antiviral ISG proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号