首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3437篇
  免费   199篇
  2023年   30篇
  2022年   26篇
  2021年   86篇
  2020年   47篇
  2019年   63篇
  2018年   99篇
  2017年   80篇
  2016年   92篇
  2015年   159篇
  2014年   165篇
  2013年   228篇
  2012年   295篇
  2011年   230篇
  2010年   160篇
  2009年   151篇
  2008年   226篇
  2007年   184篇
  2006年   173篇
  2005年   179篇
  2004年   134篇
  2003年   115篇
  2002年   119篇
  2001年   56篇
  2000年   44篇
  1999年   39篇
  1998年   39篇
  1997年   18篇
  1996年   18篇
  1995年   24篇
  1994年   12篇
  1993年   20篇
  1992年   24篇
  1991年   30篇
  1990年   28篇
  1989年   29篇
  1988年   18篇
  1987年   23篇
  1986年   29篇
  1985年   19篇
  1984年   10篇
  1983年   16篇
  1982年   12篇
  1981年   17篇
  1980年   9篇
  1979年   6篇
  1978年   7篇
  1977年   13篇
  1976年   6篇
  1975年   5篇
  1974年   5篇
排序方式: 共有3636条查询结果,搜索用时 218 毫秒
91.
We have previously observed that in vivo exposure to growing melanoma tumors fundamentally alters activated T cell homeostasis by suppressing the ability of naïve T cells to undergo antigen-driven proliferative expansion. We hypothesized that exposure of T cells in later stages of differentiation to melanoma would have similar suppressive consequences. C57BL/6 mice were inoculated with media or syngeneic B16F10 melanoma tumors 8 or 60 days after infection with lymphocytic choriomeningitis virus (LCMV), and splenic populations of LCMV-specific T cells were quantified using flow cytometry 18 days after tumor inoculation. Inoculation with melanoma on post-infection day 8 potentiated the contraction of previously activated T cells. This enhanced contraction was associated with increased apoptotic susceptibility among T cells from tumor-bearing mice. In contrast, inoculation with melanoma on post-infection day 60 did not affect the ability of previously established memory T cells to maintain themselves in stable numbers. In addition, the ability of previously established memory T cells to respond to LCMV challenge was unaffected by melanoma. Following adoptive transfer into melanoma-bearing mice, tumor-specific memory T cells were significantly more effective at controlling melanoma growth than equivalent numbers of tumor-specific effector T cells. These observations suggest that memory T cells are uniquely resistant to suppressive influences exerted by melanoma on activated T cell homeostasis; these findings may have implications for T cell–based cancer immunotherapy.  相似文献   
92.
Glioblastoma, the most common and aggressive primary brain tumors, carry a bleak prognosis and often recur even after standard treatment modalities. Emerging evidence suggests that deregulation of the Wnt/β-catenin/Tcf signaling pathway contributes to glioblastoma progression. Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit tumor cell proliferation by suppressing Wnt/β-catenin/Tcf signaling in various human malignancies. In this study, we sought to inhibit Wnt/β-catenin/Tcf signaling in glioblastoma cells by the NSAIDs diclofenac and celecoxib. Both diclofenac and celecoxib significantly reduced the proliferation, colony formation and migration of human glioblastoma cells. Diclofenac and celecoxib downregulated β-catenin/Tcf reporter activity. Western and qRT-PCR analysis showed that diclofenac and celecoxib reduced the expression of β-catenin target genes Axin2, cyclin D1 and c-Myc. In addition, the cytoplasmic accumulation and nuclear translocation of β-catenin was significantly reduced following diclofenac and celecoxib treatment. Furthermore, diclofenac and celecoxib significantly increased phosphorylation of β-catenin and reduced the phosphorylation of GSK3β. These results clearly indicated that diclofenac and celecoxib are potential therapeutic agents against glioblastoma cells that act by suppressing the activation of Wnt/β-catenin/Tcf signaling.  相似文献   
93.
94.
Abstract

The binding of the benzodioxolo-benzoquinolizine alkaloid, berberine chloride to natural and synthetic DNAs has been studied by intrinsic and extrinsic circular dichroic measurements. Binding of berberine causes changes in the circular dichroism spectrum of DNA as shown by the increase of molar ellipticity of the 270nm band, but with very little change of the 240nm band. The molar ellipticity at the saturation depends strongly on the base composition of DNA and also on salt concentration, but always larger for the AT rich DNA than the GC rich DNA The features in the circular dichroic spectral changes of berberine-synthetic DNA complexes were similar to that of native DNA but depends on the sequence of base pairs.

On binding to DNA and polynucleotides, the alkaloid becomes optically active. The extrinsic circular dichroism developed in the visible absorption region (300–500nm) for the berberine-DNA complexes shows two broad spectral bands in the regions 425–440nm and 340–360nm with the maximum varying depending on base composition and sequence of DNA While the 425nm band shows less variation on the binding ratio, the 360nm band is remarkably dependent on the DNA/alkaloid ratio. The generation of the alkaloid associated extrinsic circular dichroic bands is not dependent on the base composition or sequence of base pairs, but the nature and magnitude of the bands are very much dependent on these two factors and also on the salt concentration. The interpretation of the results with respect to the modes of the alkaloid binding to DNA are presented.  相似文献   
95.
ABSTRACT

Phytoremediation is an eco friendly approach for remediation of contaminated soil and water using plants. Phytoremediation is comprised of two components, one by the root colonizing microbes and the other by plants themselves, which degrade the toxic compounds to further non-toxic metabolites. Various compounds, viz. organic compounds, xenobiotics, pesticides and heavy metals, are among the contaminants that can be effectively remediated by plants. Plant cell cultures, hairy roots and algae have been studied for their ability to degrade a number of contaminants. They exhibit various enzymatic activities for degradation of xenobiotics, viz. dehalogenation, denitrification leading to breakdown of complex compounds to simple and non-toxic products. Plants and algae also have the ability to hyper accumulate various heavy metals by the action of phytochelatins and metallothioneins forming complexes with heavy metals and translocate them into vacuoles. Molecular cloning and expression of heavy metal accumulator genes and xenobiotic degrading enzyme coding genes resulted in enhanced remediation rates, which will be helpful in making the process for large-scale application to remediate vast areas of contaminated soils. A few companies worldwide are also working on this aspect of bioremediation, mainly by transgenic plants to replace expensive physical or chemical remediation techniques. Selection and testing multiple hyperaccumulator plants, protein engineering of phytochelatin and membrane transporter genes and their expression would enhance the rate of phytoremediation, making this process a successful one for bioremediation of environmental contamination. Recent years have seen major investments in the R&D, which have also resulted in competition of filing patents by several companies for economic gains. The details of science & technology related to phytoremediation have been discussed with a focus on future trends and prospects of global relevance.  相似文献   
96.
Consumption of raw oysters is an exposure route for human norovirus (NoV) and hepatitis A virus (HAV). Therefore, efficient postharvest oyster treatment technology is needed to reduce public health risks. This study evaluated the inactivation of HAV and the NoV research surrogate, murine norovirus-1 (MNV-1), in oysters (Crassostrea virginica) by electron beam (E-beam) irradiation. The reduction of potential infection risks was quantified for E-beam irradiation technology employed on raw oysters at various virus contamination levels. The E-beam dose required to reduce the MNV and HAV titer by 90% (D10 value) in whole oysters was 4.05 (standard deviations [SD], ±0.63) and 4.83 (SD, ±0.08) kGy, respectively. Microbial risk assessment suggests that if a typical serving of 12 raw oysters was contaminated with 105 PFU, a 5-kGy treatment would achieve a 12% reduction (from 4.49 out of 10 persons to 3.95 out of 10 persons) in NoV infection and a 16% reduction (from 9.21 out of 10 persons to 7.76 out of 10 persons) in HAV infections. If the serving size contained only 102 PFU of viruses, a 5-kGy treatment would achieve a 26% reduction (2.74 out of 10 persons to 2.03 out of 10 persons) of NoV and 91% reduction (2.1 out of 10 persons to 1.93 out of 100 persons) of HAV infection risks. This study shows that although E-beam processing cannot completely eliminate the risk of viral illness, infection risks can be reduced.  相似文献   
97.
In the present investigation, the polysaccharide/mucilage from waste of Abelmoscus esculentus by modification in hot extraction using two different solvents (Acetone, Methanol) were extracted, characterized and further compared with seaweed polysaccharide for their potential applications. The percentage yield, emulsifying capacity and swelling index of this mucilage were determined. The macro algae and okra waste, gave high % yield (22.2% and 8.6% respectively) and good emulsifying capacity (EC% = 52.38% and 54.76% respectively) with acetone, compared to methanol (11.3% and 0.28%; EC% = 50%) (PH = 7) while swelling index was greater with methanol than acetone extracts respectively. The infrared (I.R.) spectrum of the samples was recorded to investigate the chemical structure of mucilage. Thermal analysis of the mucilage was done with TGA (Thermal Gravimetric Analyzer) and DSC (Differential Scanning Calorimeter) which showed both okra and algal polysaccharide were thermostable hydrogels.  相似文献   
98.
β-Glucosidase 2 (GBA2) is an enzyme that cleaves the membrane lipid glucosylceramide into glucose and ceramide. The GBA2 gene is mutated in genetic neurological diseases (hereditary spastic paraplegia and cerebellar ataxia). Pharmacologically, GBA2 is reversibly inhibited by alkylated imino sugars that are in clinical use or are being developed for this purpose. We have addressed the ambiguity surrounding one of the defining characteristics of GBA2, which is its sensitivity to inhibition by conduritol B epoxide (CBE). We found that CBE inhibited GBA2, in vitro and in live cells, in a time-dependent fashion, which is typical for mechanism-based enzyme inactivators. Compared with the well characterized impact of CBE on the lysosomal glucosylceramide-degrading enzyme (glucocerebrosidase, GBA), CBE inactivated GBA2 less efficiently, due to a lower affinity for this enzyme (higher KI) and a lower rate of enzyme inactivation (kinact). In contrast to CBE, N-butyldeoxygalactonojirimycin exclusively inhibited GBA2. Accordingly, we propose to redefine GBA2 activity as the β-glucosidase that is sensitive to inhibition by N-butyldeoxygalactonojirimycin. Revised as such, GBA2 activity 1) was optimal at pH 5.5–6.0; 2) accounted for a much higher proportion of detergent-independent membrane-associated β-glucosidase activity; 3) was more variable among mouse tissues and neuroblastoma and monocyte cell lines; and 4) was more sensitive to inhibition by N-butyldeoxynojirimycin (miglustat, Zavesca®), in comparison with earlier studies. Our evaluation of GBA2 makes it possible to assess its activity more accurately, which will be helpful in analyzing its physiological roles and involvement in disease and in the pharmacological profiling of monosaccharide mimetics.  相似文献   
99.
Penicillin binding proteins (PBPs) are responsible for synthesizing and modifying the bacterial cell wall, and in Escherichia coli the loss of several nonessential low-molecular-weight PBPs gives rise to abnormalities in cell shape and division. To determine whether these proteins help connect the flagellar basal body to the peptidoglycan wall, we surveyed a set of PBP mutants and found that motility in an agar migration assay was compromised by the simultaneous absence of four enzymes: PBP4, PBP5, PBP7, and AmpH. A wild-type copy of any one of these restored migration, and complementation depended on the integrity of the PBP active-site serine. However, the migration defect was caused by the absence of flagella instead of improper flagellar assembly. Migration was restored if the flhDC genes were overexpressed or if the rcsB or cpxR genes were deleted. Thus, migration was inhibited because the Rcs and Cpx stress response systems were induced in the absence of these four specific PBPs. Furthermore, in this situation Rcs induction depended on the presence of CpxR. The results imply that small changes in peptidoglycan structure are sufficient to activate these stress responses, suggesting that a specific cell wall fragment may be the signal being sensed. The fact that four PBPs must be inactivated may explain why large perturbations to the envelope are required to induce stress responses.  相似文献   
100.
Biallelic inactivation of LKB1, a serine/threonine kinase, has been detected in 30% of lung adenocarcinomas, and inhibition of breast tumor growth has been demonstrated. We have identified the tumor suppressor, Nischarin, as a novel binding partner of LKB1. Our mapping analysis shows that the N terminus of Nischarin interacts with amino acids 44–436 of LKB1. Time lapse microscopy and Transwell migration data show that the absence of both Nischarin and LKB1 from an invasive breast cancer cell line (MDA-MB-231) enhances migration as measured by increased distance and speed of migrating cells. Our data suggest that this is a result of elevated PAK1 and LIMK1 phosphorylation. Moreover, the absence of Nischarin and LKB1 increased tumor growth in vivo. Consistent with this, the percentage of S phase cells was increased, as demonstrated by flow cytometry and enhanced cyclin D1. The absence of Nischarin and LKB1 also led to a dramatic increase in the formation of lung metastases. Our studies, for the first time, demonstrate functional interaction between LKB1 and Nischarin to inhibit cell migration and breast tumor progression. Mechanistically, we show that these two proteins together regulate PAK-LIMK-Cofilin and cyclin D1/CDK4 pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号