首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   228篇
  免费   9篇
  2023年   5篇
  2022年   1篇
  2021年   5篇
  2020年   4篇
  2019年   5篇
  2018年   14篇
  2017年   10篇
  2016年   10篇
  2015年   8篇
  2014年   15篇
  2013年   14篇
  2012年   25篇
  2011年   19篇
  2010年   13篇
  2009年   10篇
  2008年   15篇
  2007年   27篇
  2006年   10篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1997年   4篇
  1996年   2篇
  1977年   1篇
  1974年   1篇
  1964年   1篇
排序方式: 共有237条查询结果,搜索用时 31 毫秒
41.
Incorporation of easily available achiral ω-amino acid residues into an oligopeptide results in substitution of amide bonds by polymethylene units of an aliphatic chain, thereby providing a convenient strategy for constructing a peptidomimetic. The central Gly-Gly segment of the helical octapeptide Boc-Leu-Aib-Val-Gly-Gly-Leu-Aib-Val-Ome(1) has been replaced by δ-amino-valeric acid (δ-Ava) residue in the newly designed peptide Boc-Leu-Aib-Val-δ-Ava-Leu-Aib-Val-OMe(2). 1H-nmr results clearly suggest that in the apolar solvent CDCl3, the δ-Ava residue is accommodated into a folded helical conformation, stabilized by successive hydrogen bonds involving the NH groups of Val(3), δ-Ava(4), and Leu(5). The δ-Ava residue must adopt a gauche-gauche-trans-gauche-gauche conformation along the central polymethylene unit of the aliphatic segment, a feature seen in an energy-minimized model conformation based on nmr parameters. The absence of hydrogen bonding functionalities, however, limits the elongation of the helix. In fact, in CDCl3, the folded conformation consists of an N-terminal helix spanning residues 1–4, followed by a Type II β-turn at residues 5 and 6, whereas in strongly solvating media like (CD3)2SO, the unfolding of the N-terminal helix results in β-turn conformations at Leu(1)-Aib(2). The Type II β-turn at the Leu(5)-Aib(6) segment remains intact even in (CD3)2SO. CD comparisons of peptides 1 and 2 reveal a “nonhelical” spectrum for 2 in 2,2,2-trifluoroethanol. © 1996 John Wiley & Sons, Inc.  相似文献   
42.
The extensive use of nondegradable chemical pesticides for pest management has developed serious environmental hazards. This has necessitated the urgent need to switch over to an alternative mode of biopesticide development for mass agriculture and field crop protection. Azadirachta indica A. Juss (commonly known as neem) houses a plethora of bioactive secondary metabolites with azadirachtin being the most active constituent explored in the sector of ecofriendly and biodegradable biopesticides characterized by low toxicity toward nontarget organisms. It has been reported that the highest content of azadirachtin and related limonoids is present in the seeds, available once in a year. Moreover, the inconsistent content and purity of the metabolites in whole plant makes it imperative to tap the potential of in vitro plant tissue culture applications, which would allow for several controlled manipulations for better yield and productivities. This review gives a summarized literature of the applied research and achievements in plant cell/hairy cultures of A. indica A. Juss mainly in context with the biopesticide azadirachtin and applications thereof.  相似文献   
43.
44.
45.
Lipopolysaccharide (LPS), an integral part of the outer membrane of Gram-negative bacteria, is involved in a variety of biological processes including inflammation, septic shock, and resistance to host-defense molecules. LPS also provides an environment for folding of outer membrane proteins. In this work, we describe the structure-activity correlation of a series of 12-residue peptides in LPS. NMR structures of the peptides derived in complex with LPS reveal boomerang-like β-strand conformations that are stabilized by intimate packing between the two aromatic residues located at the 4 and 9 positions. This structural feature renders these peptides with a high ability to neutralize endotoxicity, >80% at 10 nm concentration, of LPS. Replacements of these aromatic residues either with Ala or with Leu destabilizes the boomerang structure with the concomitant loss of antiendotoxic and antimicrobial activities. Furthermore, the aromatic packing stabilizing the β-boomerang structure in LPS is found to be maintained even in a truncated octapeptide, defining a structured LPS binding motif. The mode of action of the active designed peptides correlates well with their ability to perturb LPS micelle structures. Fourier transform infrared spectroscopy studies of the peptides delineate β-type conformations and immobilization of phosphate head groups of LPS. Trp fluorescence studies demonstrated selective interactions with LPS and the depth of insertion into the LPS bilayer. Our results demonstrate the requirement of LPS-specific structures of peptides for endotoxin neutralizations. In addition, we propose that structures of these peptides may be employed to design proteins for the outer membrane.LPS2 or endotoxin, a major component of the outer leaflet of the outer membrane of Gram-negative bacteria, is critically involved in health and diseases of humans (1, 2). LPS is essential for bacterial survival through establishing an efficient permeability barrier against a variety of antimicrobial compounds including hydrophobic antibiotics, detergents, host-defense proteins, and antimicrobial peptides (3, 4). Several studies have demonstrated that LPS catalyzes folding of outer membrane proteins as a chaperone (57).LPS, a potent inducer of innate immune systems, hence called endotoxin, is primarily responsible for lethality in sepsis and septic shock syndromes associated with serious Gram-negative infections (810). Circulating LPS in bloodstream is intercepted by the phagocytic cells of the innate immune system. Once induced by LPS, these phagocytes produce proinflammatory cytokines, e.g. tumor necrosis factor-α, interleukin-6, and interleukin-1β, through the activation of a Toll-like pattern recognition receptor (11, 12). The release of cytokines in response to microbial invasion is a natural function of the innate immunity. However, an uncontrolled and overwhelming production of these cytokines may cause “endotoxic shock” or septic shock, typified by endothelial tissue damage, loss of vascular tone, coagulopathy, and multiple organ failure, often resulting in death (9, 10). Sepsis is the major cause of mortality in the intensive care unit, accounting for 200,000 deaths every year in the United States alone (13). It was demonstrated that release of LPS from antibiotic-treated Gram-negative bacteria can indeed enhance sepsis (14). Therefore, an effective antibiotic should not only exert antibacterial activities but also have the ability to sequester LPS and ameliorate its toxicity. Therefore, an amalgamated property of LPS-neutralizing and antimicrobial activity would be highly desirable for antimicrobial agents. Polymyxin B is a prototypical antimicrobial and antiendotoxic antibiotic; however, its neurotoxicity and nephrotoxicity limit its application to topical use (15). The increasing emergence of bacterial strains that are resistant to conventional antibiotics has initiated vital structure/function studies of membrane-perturbing cationic antimicrobial peptides (1620). More recent studies have been conducted to understand interactions between antimicrobial peptides with LPS to gain insights into the mechanism of outer membrane perturbation, antibacterial activities, and LPS neutralization (2126). These studies have delineated the role of amino acid sequence properties, LPS-peptide interactions by biophysical methods, and global structural parameters, obtained by CD and FTIR.Designing synthetic peptides and elucidation of three-dimensional structures in complex with LPS would be useful for the purpose of rational development of non-toxic antisepsis and antimicrobial therapeutics. Such studies will also be potentially instructive in establishing rules by which folded structures can be stabilized on the LPS surface. Extensive work in the field of peptide design primarily focuses on mimicking secondary structures and tertiary folds of proteins. Usually, short linear peptides are often structurally flexible; however, the functions of these peptides are highly dependent on their ability to adopt folded structures upon complex formation with their cognate receptors. In this regard, designed peptides that would yield high resolution structures in complex with LPS have not been well pursued. LPS, being a negatively charged amphiphilic molecule, interacts with naturally occurring peptides or protein fragments containing basic/polar and hydrophobic amino acids, although there are considerable variations in lengths, sequences, and amino acid compositions among these peptides (27, 28).Here, we have determined the three-dimensional structures of a series of 12-residue peptides in the context of LPS. To the best of our knowledge, these results show, for the first time, that atomic resolution structures of designed peptides obtained in LPS could be correlated with their antiendotoxic activities. Furthermore, the LPS-induced structures of active, inactive, and short peptide motif, presented here, may provide building blocks for the designing novel proteins for the outer membrane.  相似文献   
46.
Cholera remains a heavy burden to human health in some developing countries including India where sanitation is poor and health care is limited. After the publication of the complete genome sequence of Vibrio cholerae, the etiological agent of cholera, extensive possibilities, earlier unavailable, have opened up to understand the genetic organization of V. cholerae. In the present study, we analyzed all the pathogenic non-horizontally transferred genes of V. cholerae to know the ancestral relationship and how the pathogenic genes have been evolved in V. cholerae genome. We observed that protein domain has important role in developing pathogenicity, and codon usage pattern of the pathogenic protein domain is also subject to selection. The present study unambiguously depict that the patterns of synonymous codon usage within a protein domain can change dramatically during the course of evolution to give rise to pathogenicity.  相似文献   
47.
Rice bran oil (RBO), being naturally rich in antioxidants, is currently regarded as one of the health-beneficial edible oils. However, the RBO has essential linoleic acid (ω-6, C18:2) and α-linolenic acid (ω-3, C18:3) in nutritionally disproportionate level (~25:1), contrary to the WHO/FAO’s recommendation of ~5:1. Among few naturally occurring C18:3 enriched oil-seeds, Brassica juncea (Indian mustard) has almost equal proportion of ω-6 and ω-3 fatty acids in its oil due to the activity of microsomal ω-3 desaturase (Fad3), which converts C18:2–C18:3. Therefore, the full length Fad3 coding DNA sequence (CDS) was isolated from the developing seeds of B. juncea, functionally characterized and heterologously expressed for the nutritional enhancement of RBO. Sequence analysis revealed that the 1,134 bp long BjFad3 CDS corresponds to a polypeptide of 377 amino acids, which is highly (85–95 %) homologous to other known Fad3 enzymes of plant kingdom. The BjFad3 gene was initially characterized in transgenic tobacco to establish its linoleate desaturase activity. Thereafter, rice bran-specific expression of the BjFad3 was carried out to alter the fatty acid profile of RBO. Several independent transgenic lines of tobacco and rice plants were developed by Agrobacterium-mediated transformation. Standard molecular biological techniques were used to confirm the transgene integration in the respective genomes and subsequent in planta expression. The BjFad3 transgene expression correlated to the significant increase in C18:3 fatty acid content (up to tenfold) in both tobacco seed oil and RBO, and thereby improving the nutritionally desirable ω-6:ω-3 ratio (~2:1) in one of the transgenic rice lines.  相似文献   
48.
The sterile alpha motif or SAM domain is one of the most frequently present protein interaction modules with diverse functional attributions. SAM domain of the Ste11 protein of budding yeast plays important roles in mitogen‐activated protein kinase cascades. In the current study, urea‐induced, at subdenaturing concentrations, structural, and dynamical changes in the Ste11 SAM domain have been investigated by nuclear magnetic resonance spectroscopy. Our study revealed that a number of residues from Helix 1 and Helix 5 of the Ste11 SAM domain display plausible alternate conformational states and largest chemical shift perturbations at low urea concentrations. Amide proton (H/D) exchange experiments indicated that Helix 1, loop, and Helix 5 become more susceptible to solvent exchange with increased concentrations of urea. Notably, Helix 1 and Helix 5 are directly involved in binding interactions of the Ste11 SAM domain. Our data further demonstrate that the existence of alternate conformational states around the regions involved in dimeric interactions in native or near native conditions. Proteins 2014; 82:2957–2969. © 2014 Wiley Periodicals, Inc.  相似文献   
49.

Background

Tafazzin (TAZ), a transmembrane protein contributes in mitochondrial structural and functional modifications through cardiolipin remodeling. TAZ mutations are associated with several diseases, but studies on the role of TAZ protein in carcinogenesis and radiotherapy (RT) response is lacking. Therefore we investigated the TAZ expression in rectal cancer, and its correlation with RT, clinicopathological and biological variables in the patients participating in a clinical trial of preoperative RT.

Methods

140 rectal cancer patients were included in this study, of which 65 received RT before surgery and the rest underwent surgery alone. TAZ expression was determined by immunohistochemistry in primary cancer, distant, adjacent normal mucosa and lymph node metastasis. In-silico protein-protein interaction analysis was performed to study the predictive functional interaction of TAZ with other oncoproteins.

Results

TAZ showed stronger expression in primary cancer and lymph node metastasis compared to distant or adjacent normal mucosa in both non-RT and RT patients. Strong TAZ expression was significantly higher in stages I-III and non-mucinious cancer of non-RT patients. In RT patients, strong TAZ expression in biopsy was related to distant recurrence, independent of gender, age, stages and grade (p = 0.043, HR, 6.160, 95% CI, 1.063–35.704). In silico protein-protein interaction study demonstrated that TAZ was positively related to oncoproteins, Livin, MAC30 and FXYD-3.

Conclusions

Strong expression of TAZ protein seems to be related to rectal cancer development and RT response, it can be a predictive biomarker of distant recurrence in patients with preoperative RT.  相似文献   
50.
ComplexinII (CpxII) and SynaptotagminI (SytI) have been implicated in regulating the function of SNARE proteins in exocytosis, but their precise mode of action and potential interplay have remained unknown. In this paper, we show that CpxII increases Ca2+-triggered vesicle exocytosis and accelerates its secretory rates, providing two independent, but synergistic, functions to enhance synchronous secretion. Specifically, we demonstrate that the C-terminal domain of CpxII increases the pool of primed vesicles by hindering premature exocytosis at submicromolar Ca2+ concentrations, whereas the N-terminal domain shortens the secretory delay and accelerates the kinetics of Ca2+-triggered exocytosis by increasing the Ca2+ affinity of synchronous secretion. With its C terminus, CpxII attenuates fluctuations of the early fusion pore and slows its expansion but is functionally antagonized by SytI, enabling rapid transmitter discharge from single vesicles. Thus, our results illustrate how key features of CpxII, SytI, and their interplay transform the constitutively active SNARE-mediated fusion mechanism into a highly synchronized, Ca2+-triggered release apparatus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号