首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   433篇
  免费   60篇
  国内免费   1篇
  2022年   2篇
  2021年   18篇
  2020年   4篇
  2019年   10篇
  2018年   16篇
  2017年   10篇
  2016年   19篇
  2015年   24篇
  2014年   26篇
  2013年   27篇
  2012年   24篇
  2011年   40篇
  2010年   26篇
  2009年   26篇
  2008年   24篇
  2007年   26篇
  2006年   20篇
  2005年   25篇
  2004年   21篇
  2003年   18篇
  2002年   11篇
  2001年   9篇
  2000年   8篇
  1999年   5篇
  1998年   7篇
  1997年   2篇
  1996年   1篇
  1995年   6篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1969年   3篇
  1967年   1篇
  1958年   1篇
  1953年   1篇
  1950年   1篇
  1949年   1篇
  1944年   1篇
  1935年   1篇
  1931年   2篇
排序方式: 共有494条查询结果,搜索用时 265 毫秒
51.
52.
Natural variation in the regulation of the accumulation of mineral nutrients and trace elements in plant tissues is crucial to plant metabolism, development, and survival across different habitats. Studies of the genetic basis of natural variation in nutrient metabolism have been facilitated by the development of ionomics. Ionomics is a functional genomic approach for the identification of the genes and gene networks that regulate the elemental composition, or ionome, of an organism. In this study, we evaluated the genetic basis of divergence in elemental composition between an inland annual and a coastal perennial accession of Mimulus guttatus using a recombinant inbred line (RIL) mapping population. Out of 20 elements evaluated, Mo and Cd were the most divergent in accumulation between the two accessions and were highly genetically correlated in the RILs across two replicated experiments. We discovered two major quantitative trait loci (QTL) for Mo accumulation, the largest of which consistently colocalized with a QTL for Cd accumulation. Interestingly, both Mo QTLs also colocalized with the two M. guttatus homologues of MOT1, the only known plant transporter to be involved in natural variation in molybdate uptake.  相似文献   
53.
The empty sella turcica is defined as the herniation of the subarachnoid space within the sella with displacement of the pituitary towards the posteroinferior wall. By autopsy studies, the incidence in the general population is around 20%. The association of prolactinoma and empty sella has been coincidental & infrequently reported. As such for microadenoma, visual field testing and screening for hypopituitarism is not needed, but if it is associated with empty sella, both visual field testing and screening for hypopituitarism is necessary.  相似文献   
54.
Understanding the mechanism of cadmium (Cd) accumulation in plants is important to help reduce its potential toxicity to both plants and humans through dietary and environmental exposure. Here, we report on a study to uncover the genetic basis underlying natural variation in Cd accumulation in a world-wide collection of 349 wild collected Arabidopsis thaliana accessions. We identified a 4-fold variation (0.5-2 μg Cd g(-1) dry weight) in leaf Cd accumulation when these accessions were grown in a controlled common garden. By combining genome-wide association mapping, linkage mapping in an experimental F2 population, and transgenic complementation, we reveal that HMA3 is the sole major locus responsible for the variation in leaf Cd accumulation we observe in this diverse population of A. thaliana accessions. Analysis of the predicted amino acid sequence of HMA3 from 149 A. thaliana accessions reveals the existence of 10 major natural protein haplotypes. Association of these haplotypes with leaf Cd accumulation and genetics complementation experiments indicate that 5 of these haplotypes are active and 5 are inactive, and that elevated leaf Cd accumulation is associated with the reduced function of HMA3 caused by a nonsense mutation and polymorphisms that change two specific amino acids.  相似文献   
55.
The thiazolidinedione anti-diabetic drugs increase activation of endothelial nitric-oxide (NO) synthase by phosphorylation at Ser-1177 and increase NO bioavailability, yet the molecular mechanisms that underlie this remain poorly characterized. Several protein kinases, including AMP-activated protein kinase, have been demonstrated to phosphorylate endothelial NO synthase at Ser-1177. In the current study we determined the role of AMP-activated protein kinase in rosiglitazone-stimulated NO synthesis. Stimulation of human aortic endothelial cells with rosiglitazone resulted in the time- and dose-dependent stimulation of AMP-activated protein kinase activity and NO production with concomitant phosphorylation of endothelial NO synthase at Ser-1177. Rosiglitazone stimulated an increase in the ADP/ATP ratio in endothelial cells, and LKB1 was essential for rosiglitazone-stimulated AMPK activity in HeLa cells. Infection of endothelial cells with a virus encoding a dominant negative AMP-activated protein kinase mutant abrogated rosiglitazone-stimulated Ser-1177 phosphorylation and NO production. Furthermore, the stimulation of AMP-activated protein kinase and NO synthesis by rosiglitazone was unaffected by the peroxisome proliferator-activated receptor-gamma inhibitor GW9662. These studies demonstrate that rosiglitazone is able to acutely stimulate NO synthesis in cultured endothelial cells by an AMP-activated protein kinase-dependent mechanism, likely to be mediated by LKB1.  相似文献   
56.
Plants that have evolved to survive on metal‐rich soils—metallophytes—have key values that must drive research of their unique properties and ultimately their conservation. The ability of metallophytes to tolerate extreme metal concentrations commends them for revegetation of mines and metal‐contaminated sites. Metallophytes can also be exploited in environmental technologies, for example, phytostabilization, phytoremediation, and phytomining. Actions towards conserving metallophyte species are imperative, as metallophytes are increasingly under threat of extinction from mining activity. Although many hundreds of papers describe both the biology and applications of metallophytes, few have investigated the urgent need to conserve these unique species. This paper identifies the current state of metallophyte research, and advocates future research needs for the conservation of metallophyte biodiversity and the sustainable uses of metallophyte species in restoration, rehabilitation, contaminated site remediation, and other nascent phytotechnologies. Six fundamental questions are addressed: (1) Is enough known about the global status of metallophytes to ensure their conservation? (2) Are metallophytes threatened by the activities of the minerals industry, and can their potential for the restoration or rehabilitation of mined and disturbed land be realized? (3) What problems exist in gaining prior informed consent to access metallophyte genetic resources and how can the benefits arising from their uses be equitably shared? (4) What potential do metallophytes offer as a resource base for phytotechnologies? (5) Can genetic modification be used to “design” metallophytes to use in the remediation of contaminated land? (6) Does the prospect of using metallophytes in site remediation and restoration raise ethical issues?  相似文献   
57.
Protein arginine methyltransferase 1 (PRMT1) catalyzes the mono- and dimethylation of certain protein arginine residues. Although this posttranslational modification has been implicated in many physiological processes, the molecular basis for PRMT1 substrate recognition is poorly understood. Most modified arginine residues in known PRMT1 substrates reside in repeating "RGG" sequences. However, PRMT1 also specifically methylates Arg3 of histone H4 in a region that is not glycine-arginine rich, suggesting that PRMT1 substrates are not limited to proteins bearing "RGG" sequences. Because a systematic evaluation of PRMT1 substrate specificity has not been performed, it is unclear if the "RGG" sequence accurately represents the consensus target for PRMT1. Using a focused peptide library based on a sequence derived from the in vivo substrate fibrillarin we observed that PRMT1 methylated substrates that had amino acid residues other than glycine in the "RX (1)" and "RX (1)X (2)" positions. Importantly, eleven additional PRMT1 substrate sequences were identified. Our results also illustrate that the two residues on the N-terminal side of the modification site are important and need not both be glycine. PRMT1 methylated the eukaryotic initiation factor 4A1 (eIF4A1) protein, which has a single "RGG" sequence. Methylation of eIF4A1 and the similar eIF4A3 could be affected using single site mutations adjacent to the modification site, demonstrating the importance of amino acid sequence in PRMT1 protein substrates. Dimethylation of the parent library peptide was shown to occur through a dissociative mechanism. In summary, PRMT1 selectively recognizes a set of amino acid sequences in substrates that extend beyond the "RGG" paradigm.  相似文献   
58.
The examination of 137 non-O1/O139 Vibrio cholerae isolates from Newport Bay, California, indicated the presence of diverse genotypes and a temporal succession. Unexpectedly, the cholera toxin gene (ctxA) was found in 17% of the strains, of which one-third were also positive for the zot gene. This suggests that ctxA is prevalent in the region of nonepidemicity and is likely to have an environmental origin.  相似文献   
59.
Staphylococcus aureus (five strains) and Staph. epidermidis (one strain) have been evaluated for comparative growth and haemolysin titre in both brain heart infusion (BHI) and in developed, nutritionally adequate, chemically defined media (CDMs) varying only in amino acid composition. The ability to show a particular haemolytic profile was strain-dependent and the haemolytic titre (HU50/ml) was both strain- and medium-dependent. Highest titres of both alpha and beta type haemolysins were obtained in BHI. Maximum titres were in general detected in the late exponential phase in both CDMs and BHI. Titres declined during the stationary phase in CDMs. Staphylococcus epidermidis produced a delta-type haemolysis profile on BHI-based blood agars, but only rabbit blood was sensitive in agars based on a developed, chemically defined medium (CDM/A; 13 amino acids) in which all six staphylococci grew. The addition of yeast extract to CDM/A increased alpha haemolysin titre, but suppressed beta haemolysin formation; beta haemolysin was, however, detected in yeast extract/phosphate-buffered saline. Strain Wood 46 degraded haemoglobin, but only in (initially) whole blood; red blood cell-free haemoglobin-rich plates (BHI) were unaffected during growth. A novel haemolytic profile is described for Staph. aureus NCTC 8532 growing on blood agars based on CDM/A and may relate to the production of methaemoglobin during haemolysis.  相似文献   
60.
Genome-wide association (GWA) analyses have generally been used to detect individual loci contributing to the phenotypic diversity in a population by the effects of these loci on the trait mean. More rarely, loci have also been detected based on variance differences between genotypes. Several hypotheses have been proposed to explain the possible genetic mechanisms leading to such variance signals. However, little is known about what causes these signals, or whether this genetic variance-heterogeneity reflects mechanisms of importance in natural populations. Previously, we identified a variance-heterogeneity GWA (vGWA) signal for leaf molybdenum concentrations in Arabidopsis thaliana. Here, fine-mapping of this association reveals that the vGWA emerges from the effects of three independent genetic polymorphisms that all are in strong LD with the markers displaying the genetic variance-heterogeneity. By revealing the genetic architecture underlying this vGWA signal, we uncovered the molecular source of a significant amount of hidden additive genetic variation or “missing heritability”. Two of the three polymorphisms underlying the genetic variance-heterogeneity are promoter variants for Molybdate transporter 1 (MOT1), and the third a variant located ~25 kb downstream of this gene. A fourth independent association was also detected ~600 kb upstream of MOT1. Use of a T-DNA knockout allele highlights Copper Transporter 6; COPT6 (AT2G26975) as a strong candidate gene for this association. Our results show that an extended LD across a complex locus including multiple functional alleles can lead to a variance-heterogeneity between genotypes in natural populations. Further, they provide novel insights into the genetic regulation of ion homeostasis in A. thaliana, and empirically confirm that variance-heterogeneity based GWA methods are a valuable tool to detect novel associations of biological importance in natural populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号