首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   796篇
  免费   79篇
  2023年   3篇
  2022年   5篇
  2021年   14篇
  2020年   9篇
  2019年   11篇
  2018年   12篇
  2017年   8篇
  2016年   25篇
  2015年   31篇
  2014年   41篇
  2013年   56篇
  2012年   67篇
  2011年   67篇
  2010年   41篇
  2009年   24篇
  2008年   46篇
  2007年   38篇
  2006年   26篇
  2005年   33篇
  2004年   39篇
  2003年   31篇
  2002年   31篇
  2001年   16篇
  2000年   24篇
  1999年   27篇
  1998年   18篇
  1997年   9篇
  1996年   9篇
  1995年   12篇
  1994年   10篇
  1993年   7篇
  1992年   10篇
  1991年   16篇
  1990年   7篇
  1989年   7篇
  1988年   5篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   8篇
  1980年   2篇
  1975年   2篇
  1971年   1篇
  1969年   1篇
  1954年   1篇
  1952年   1篇
  1936年   1篇
  1931年   1篇
排序方式: 共有875条查询结果,搜索用时 109 毫秒
91.
Mammalian lipoxygenases (LOXs) are categorized with respect to their positional specificity of arachidonic acid oxygenation. Site-directed mutagenesis identified sequence determinants for the positional specificity of these enzymes, and a critical amino acid for the stereoselectivity was recently discovered. To search for sequence determinants of murine (12R)-LOX, we carried out multiple amino acid sequence alignments and found that Phe(390), Gly(441), Ala(455), and Val(631) align with previously identified positional determinants of S-LOX isoforms. Multiple site-directed mutagenesis studies on Phe(390) and Ala(455) did not induce specific alterations in the reaction specificity, but yielded enzyme species with reduced specific activities and stereo random product patterns. Mutation of Gly(441) to Ala, which caused drastic alterations in the reaction specificity of other LOX isoforms, failed to induce major alterations in the positional specificity of mouse (12R)-LOX, but markedly modified the enantioselectivity of the enzyme. When Val(631), which aligns with the positional determinant Ile(593) of rabbit 15-LOX, was mutated to a less space-filling residue (Ala or Gly), we obtained an enzyme species with augmented catalytic activity and specifically altered reaction characteristics (major formation of chiral (11R)-hydroxyeicosatetraenoic acid methyl ester). The importance of Val(631) for the stereo control of murine (12R)-LOX was confirmed with other substrates such as methyl linoleate and 20-hydroxyeicosatetraenoic acid methyl ester. These data identify Val(631) as the major sequence determinant for the specificity of murine (12R)-LOX. Furthermore, we conclude that substrate fatty acids may adopt different catalytically productive arrangements at the active site of murine (12R)-LOX and that each of these arrangements may lead to the formation of chiral oxygenation products.  相似文献   
92.
Mammalian homologues of the Drosophila canonical transient receptor potential (TRP) proteins have been implicated to function as plasma membrane Ca(2+) channels. This study examined the role of TRPC1 in human neuroblastoma (SH-SY5Y) cells. SH-SY5Y cells treated with an exogenous neurotoxin, 1-methyl-4-phenylpyridinium ion (MPP(+)) significantly decreased TRPC1 protein levels. Confocal microscopy on SH-SY5Y cells treatment with MPP(+) showed decreased plasma membrane staining of TRPC1. Importantly, overexpression of TRPC1 reduced neurotoxicity induced by MPP(+). MPP(+)-induced alpha-synuclein expression was also suppressed by TRPC1 overexpression. Protection of SH-SY5Y cells against MPP(+) was significantly decreased upon the overexpression of antisense TRPC1 cDNA construct or the addition of a nonspecific transient receptor potential channel blocker lanthanum. Activation of TRPC1 by thapsigargin or carbachol decreased MPP(+) neurotoxicity, which was partially dependent on external Ca(2+). Staining of SH-SY5Y cells with an apoptotic marker (YO-PRO-1) showed that TRPC1 protects SH-SY5Y neuronal cells against apoptosis. Further, TRPC1 overexpression inhibited cytochrome c release and decreased Bax and Apaf-1 protein levels. Interpretation of the above data suggests that reduction in the cell surface expression of TRPC1 following MPP(+) treatment may be involved in dopaminergic neurodegeneration. Furthermore, TRPC1 may inhibit degenerative apoptotic signaling to provide neuroprotection against Parkinson's disease-inducing agents.  相似文献   
93.
A nuclear localization sequence (NLS) in the type II interferon (IFN) IFN gamma, which is responsible for the nuclear translocation of both the ligand and the alpha-subunit (IFNGR1) of the receptor complex, has previously been characterized and its role in signaling examined in detail. We have now identified an NLS in the type I IFN receptor (IFNAR) common subunit IFNAR1 from humans and show that the human IFNAR1 subunit can translocate to the nucleus following human IFN beta stimulation. An NLS in human IFNAR1 is located in the extracellular domain of IFNAR1 within the sequence (382)RKIIEKKT (numbered for the precursor form). Nuclear import by the NLS functions in a conventional fashion requiring cytosolic import factors, is energy-dependent and inhibited by the prototypical NLS of the SV40 large T-antigen. These studies provide a mechanism for nuclear import of IFNAR1, as well as for type I IFN ligands, and a starting point for studying an alternate role for IFNAR1 in nuclear signaling within the type I IFN system.  相似文献   
94.
95.
Membrane proteins that belong to the major facilitator superfamily (MFS) are found in organisms across the evolutionary spectrum and mediate the transport of a variety of substrates ranging from small metabolites to neurotransmitters. The oxalate transporter (OxlT) is a representative MFS protein, and exchanges formate for oxalate across the cytoplasmic membrane of the organism Oxalobacter formigenes. Here, we present a structural model for the protein conformational changes that occur during oxalate transport by combining a three-dimensional map of the oxalate-bound, "closed" state of OxlT at 6.5 A determined by cryo-electron microscopy with a model of the "open" state of OxlT based on the atomic structures of the related transporters, glycerol-3-phosphate transporter (GlpT) and lactose permease (LacY). We demonstrate that the principal structural change associated with substrate transport is a concerted rocking movement of the two structurally similar halves of the protein relative to each other. Our structural model places two positively charged residues, Arg-272 and Lys-355 in the central cavity, suggesting that electrostatic interactions between these residues and the oxalate anion is a key step in generating the conformational change between the open and closed states of the transporter.  相似文献   
96.
Clostridium botulinum neurotoxins are the most potent toxins to humans and cause paralysis by blocking neurotransmitter release at the presynaptic nerve terminals. The toxicity involves four steps, viz., binding to neuronal cells, internalization, translocation, and catalytic activity. While the catalytic activity is a zinc endopeptidase activity on the SNARE complex proteins, the translocation is believed to be a pH-dependent process allowing the translocation domain to change its conformation to penetrate the endosomal membrane. Here, we report the crystal structures of botulinum neurotoxin type B at various pHs and of an apo form of the neurotoxin, and discuss the role of metal ions and the effect of pH variation in the biological activity. Except for the perturbation of a few side chains, the conformation of the catalytic domain is unchanged in the zinc-depleted apotoxin, suggesting that zinc's role is catalytic. We have also identified two calcium ions in the molecule and present biochemical evidence to show that they play a role in the translocation of the light chain through the membrane.  相似文献   
97.
Electron tomography is a powerful method for determining the three-dimensional structures of large macromolecular assemblies, such as cells, organelles, and multiprotein complexes, when crystallographic averaging methods are not applicable. Here we used electron tomographic imaging to determine the molecular architecture of Escherichia coli cells engineered to overproduce the bacterial chemotaxis receptor Tsr. Tomograms constructed from fixed, cryosectioned cells revealed that overproduction of Tsr led to formation of an extended internal membrane network composed of stacks and extended tubular structures. We present an interpretation of the tomogram in terms of the packing arrangement of Tsr using constraints derived from previous X-ray and electron-crystallographic studies of receptor clusters. Our results imply that the interaction between the cytoplasmic ends of Tsr is likely to stabilize the presence of the membrane networks in cells overproducing Tsr. We propose that membrane invaginations that are potentially capable of supporting axial interactions between receptor clusters in apposing membranes could also be present in wild-type E. coli and that such receptor aggregates could play an important role in signal transduction during bacterial chemotaxis.  相似文献   
98.
Our recent studies have shown that extracellular-regulated protein kinase (ERK) promotes cell death in cerebellar granule neurons (CGN) cultured in low potassium. Here we report that the "death" phenotypes of CGN after potassium withdrawal are heterogeneous, allowing the distinction between plasma membrane (PM)-, DNA-, and PM/DNA-damaged populations. These damaged neurons display nuclear condensation that precedes PM or DNA damage. Inhibition of ERK activation either by U0126 or by dominant-negative mitogen-activated protein kinase/ERK kinase (MEK) overexpression results in a dramatic reduction of PM damaged neurons and nuclear condensation. In contrast, overexpression of constitutively active MEK potentiates PM damage and nuclear condensation. ERK-promoted cellular damage is independent of caspase-3. Persistent active ERK translocates to the nucleus, whereas caspase-3 remains in the cytoplasm. Antioxidants that reduced ERK activation and PM damage showed no effect on caspase-3 activation or DNA damage. These data identify ERK as an important executor of neuronal damage involving a caspase-3-independent mechanism.  相似文献   
99.
Self-assembly of alpha-synuclein resulting in protein aggregates of diverse morphology has been implicated in the pathogenesis of Parkinson's disease and other neurodegenerative disorders known as synucleinopathies. Apart from its biomedical relevance, this aggregation process is representative of the interconversion of an unfolded protein into nanostructures with typical amyloid features. We have used in situ tapping mode atomic force microscopy to continuously monitor the self-assembly of wild-type alpha-synuclein, its disease-related mutants A30P and A53T, and the C-terminally truncated variant alpha-synuclein(1-108). Different aggregation modes were observed depending on experimental conditions, i.e. pH, protein concentration, polyamine concentration, temperature and the supporting substrate. At pH 7.5, in the absence of the biogenic polyamines spermidine or spermine, elongated sheets 1.1(+/-0.2)nm in height and presumably representing individual beta-sheet structures, were formed on mica substrates within a few minutes. Their orientation was directed by the crystalline substructure of the substrate. In contrast, sheet formation was not observed with hydrophobic highly oriented pyrolytic graphite substrates, suggesting that negatively charged surfaces promote alpha-synuclein self-assembly. In the presence of spermidine or spermine 5.9(+/-1.0)nm high spheroidal structures were preferentially formed, sharing characteristics with similar structures previously reported for several amyloidogenic proteins and linked to neurotoxicity. alpha-Synuclein spheroid formation depended critically on polyamine binding to the C terminus, revealing a promoting effect of the C terminus on alpha-synuclein assembly in the bound state. In rare cases, fibril growth from spheroids or preformed aggregates was observed. At pH 5.0, fibrils were formed initially and incorporated into amorphous aggregates in the course of the aggregation process, providing evidence for the potential of amyloid fibril surfaces to act as nucleation sites in amorphous aggregation. This study provides a direct insight into different modes of alpha-synuclein self-assembly and identifies key factors modulating the aggregation process.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号