首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   4篇
  2021年   2篇
  2017年   3篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   9篇
  2012年   3篇
  2011年   2篇
  2010年   6篇
  2009年   3篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  1999年   2篇
  1998年   2篇
  1992年   2篇
排序方式: 共有59条查询结果,搜索用时 375 毫秒
31.
Burkholderia pseudomallei, a pathogenic gram‐negative bacterium, causes the severe human disease melioidosis. This organism can survive in eukaryotic host cells by escaping reactive oxygen species via the regulation of stress responsive sigma factors, including RpoS. In B. pseudomallei, RpoS has been reported to play a role in the oxidative stress response through enhanced activity of OxyR and catalase. In this study, the RpoS dependent oxidative stress responsive system was further characterized using comparative proteomic analysis. The proteomic profiles of wild‐type B. pseudomallei following exposure to H2O2 and between wild‐type and the rpoS mutant strains were analyzed. Using stringent criteria, 13 oxidative responsive proteins, eight of which are regulated by RpoS, were identified with high confidence. It was observed that ScoA, a subunit of the SCOT enzyme not previously shown to be involved directly in the oxidative stress response, is significantly down‐regulated after hydrogen peroxide treatment. ScoA and ScoB have been predicted to be organized in a single operon using computational methods: in this study it was confirmed by RT‐PCR that these genes are indeed co‐transcribed as a single mRNA. The present study is the first to report a role for RpoS in the down‐regulation of SCOT expression in response to oxidative stress in B. pseudomallei.  相似文献   
32.
33.
34.
Many eukaryotic proteins have been produced successfully in Escherichia coli. However, not every gene can be expressed efficiently in this organism. Most proteins, especially those with multiple disulfide bonds, have been shown to form insoluble protein or inclusion body in E. coli. An inactive form of protein would require an in vitro refolding step to regain biological functions. In this study, we described the system for soluble expression of a single-chain variable fragment (scFv) against hepatocellular carcinoma (Hep27scFv) by coexpressing Dsb protein and enhancing with medium additives. The results revealed that overexpression of DsbABCD protein showed marked effect on the soluble production of Hep27scFv, presumably facilitating correct folding. The optimal condition for soluble scFv expression could be obtained by adding 0.5M sorbitol to the culture medium. The competitive enzyme-linked immunosorbent assay (ELISA) indicated that soluble scFv expressed by our method retains binding activity toward the same epitope on a hepatocellular carcinoma cell line (HCC-S102) recognized by intact antibody (Ab) (Hep27 Mab). Here, we report an effective method for soluble expression of scFv in E. coli by the Dsb coexpression system with the addition of sorbitol medium additive. This method might be applicable for high-yield soluble expression of proteins with multiple disulfide bonds.  相似文献   
35.
A citrate synthase (CS) deletion mutant of Agrobacterium tumefaciens C58 is highly attenuated in virulence. The identity of the mutant was initially determined from its amino acid sequence, which is 68% identical to Escherichia coli and 77% identical to Brucella melitensis. The mutant lost all CS enzymatic activity, and a cloned CS gene complemented a CS mutation in Sinorhizobium. The CS mutation resulted in a 10-fold reduction in vir gene expression, which likely accounts for the attenuated virulence. When a plasmid containing a constitutive virG [virG(Con)] locus was introduced into this mutant, the level of vir gene induction was restored to nearly wild-type level. Further, the virG(Con)-complemented CS mutant strain induced tumors that were similar in size and number to those induced by the parental strain. The CS mutation resulted in only a minor reduction in growth rate in a glucose-salts medium. Both the CS mutant and the virG(Con)-complemented CS strain displayed similar growth deficiencies in a glucose-salts medium, indicating that the reduced growth rate of the CS mutant could not be responsible for the attenuated virulence. A search of the genome of A. tumefaciens C58 revealed four proteins, encoded on different replicons, with conserved CS motifs. However, only the locus that when mutated resulted in an attenuated phenotype has CS activity. Mutations in the other three loci did not result in attenuated virulence and any loss of CS activity, and none were able to complement the CS mutation in Sinorhizobium. The function of these loci remains unknown.  相似文献   
36.
Prevalence of Arcobacter spp. in chicken meat samples and environmental water samples in Japan and Thailand was investigated. Arcobacter was isolated from 48% of chicken meat samples (20/41) and 23% of river water samples (4/17) from Japan, and 100% of chicken meat samples (10/10) and 100% of canal water samples (7/7) from Thailand. A. butzleri was among the species isolated from all positive samples. About 10% genetic diversity was seen in the rpoB-rpoC in Arcobacters, and phylogenetic trees were divided into two clusters. In both countries, the results suggested that chicken and environmental water were highly contaminated with a genetically diverse population of Arcobacter.  相似文献   
37.

Background  

Resistance of cholangiocarcinoma to chemotherapy is a major problem in cancer treatment. The mechanism of resistance is believed to involve phosphoinositide-3- kinase (PI3K)/Akt activation. Although the platinum-containing compound oxaliplatin has been extensively used in the treatment of several solid tumors, recent data regarding its use to treat cholangiocarcinoma are ambiguous. Oxaliplatin resistance in this disease could potentially involve PI3K pathways. We, therefore, examined the effects of PI3K pathways in cholangiocarcinoma cells in modulating oxaliplatin resistance.  相似文献   
38.
Whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (whole-cell MALDI-TOF MS) has been widely adopted as a useful technology in the identification and typing of microorganisms. This study employed the whole-cell MALDI-TOF MS to identify and differentiate wild-type and mutants containing constructed single gene mutations of Burkholderia pseudomallei, a pathogenic bacterium causing melioidosis disease in both humans and animals. Candidate biomarkers for the B. pseudomallei mutants, including rpoS, ppk, and bpsI isolates, were determined. Taxon-specific and clinical isolate-specific biomarkers of B. pseudomallei were consistently found and conserved across all average mass spectra. Cluster analysis of MALDI spectra of all isolates exhibited separate distribution. A total of twelve potential mass peaks discriminating between wild-type and mutant isolates were identified using ClinProTools analysis. Two peaks (m/z 2721 and 2748 Da) were specific for the rpoS isolate, three (m/z 3150, 3378, and 7994 Da) for ppk, and seven (m/z 3420, 3520, 3587, 3688, 4623, 4708, and 5450 Da) for bpsI. Our findings demonstrated that the rapid, accurate, and reproducible mass profiling technology could have new implications in laboratory-based rapid differentiation of extensive libraries of genetically altered bacteria.  相似文献   
39.
To identify conserved T and B cell epitopes on the M protein of group A beta-hemolytic streptococci, overlapping synthetic peptides that span the conserved carboxyl-terminal segment of the M-5 protein were constructed and used to immunize a panel of H-2 congenic mice. Proliferative T cell epitopes were identified and, in many cases, mice immunized with these peptides produced high titer antibodies to the same peptides indicating that these proliferative epitopes could also stimulate Th cells. Peptide-specific T cells and antisera were tested for their reactivity with porcine myosin, tropomyosin, human heart myosin synthetic peptides, and extracts of human pericardial and atrial heart tissue. Although there was minimal response of M peptide-specific T cells to any of these Ag, certain M peptide-specific antisera reacted to immunoblotted porcine myosin and to an immunoblotted extract of human atrial heart tissue. However, two conserved peptides, LRRDLDASREAKKQVEKALE and KLTEKEKAELQAKLEAEAKA, stimulated peptide-specific antibodies in B10.BR and B10.D2 mice respectively, which reacted minimally if at all with human atrial heart tissue extract. Furthermore, antisera to the former peptide, in a bactericidal assay involving human monocytes, could mediate killing of streptococci (82% of bacteria). Although this level of killing is less than that produced by antisera to the highly polymorphic type-specific aminoterminus (up to 100% killing), it provides evidence that conserved epitopes can be the targets of bactericidal antibodies. These conserved epitopes may be useful in a vaccine because they also stimulate T cells, thus allowing development of immunologic memory and natural boosting of an immune response after natural exposure.  相似文献   
40.
Bartonella bovis is commonly detected in cattle. One B. bovis strain was recently isolated from a cow with endocarditis in the USA, suggesting its role as an animal pathogen. In the present study, we investigated bartonella infections in 893 cattle from five countries (Kenya, Thailand, Japan, Georgia, and Guatemala) and 103 water buffaloes from Thailand to compare the prevalence of the infection among different regions and different bovid hosts. We developed a multi-locus sequence typing (MLST) scheme based on nine loci (16S rRNA, gltA, ftsZ, groEL, nuoG, ribC, rpoB, ssrA, and ITS) to compare genetic divergence of B. bovis strains, including 26 representatives from the present study and two previously described reference strains (one from French cows and another from a cow with endocarditis in the USA). Bartonella bacteria were cultured in 6.8% (7/103) of water buffaloes from Thailand; all were B. bovis. The prevalence of bartonella infections in cattle varied tremendously across the investigated regions. In Japan, Kenya, and the Mestia district of Georgia, cattle were free from the infection; in Thailand, Guatemala, and the Dusheti and Marneuli districts of Georgia, cattle were infected with prevalences of 10–90%. The Bartonella isolates from cattle belonged to three species: B. bovis (n=165), B. chomelii (n=9), and B. schoenbuchensis (n=1), with the latter two species found in Georgia only. MLST analysis suggested genetic variations among the 28 analyzed B. bovis strains, which fall into 3 lineages (I, II, and III). Lineages I and II were found in cattle while lineage III was restricted to water buffaloes. The majority of strains (17/28), together with the strain causing endocarditis in a cow in the USA, belonged to lineage I. Further investigations are needed to determine whether B. bovis causes disease in bovids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号